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Zusammenfassung

Diese Dissertation behandelt die Herausforderungen der Dekarbonisierung im Energiesektor aus verschie-
denen Perspektiven mit unterschiedlichen Methoden. Kapitel 1 liefert Hintergrund und Motivation. Kapi-
tel 2 analysiert die Beziehung zwischen geografischer und zeitlicher Flexibilität im Strommarkt in einem
Szenario mit 100% erneuerbaren Energien in zwölf mitteleuropäischen Ländern. Unter Anwendung eines
Energiesystemmodells und einer Faktortrennungsmethode werden die Auswirkungen des europäischen Strom-
verbunds auf die optimale Speicherkapazität untersucht. Es zeigt sich, dass sich der Speicherbedarf durch
den Stromverbund um 30% verringert, was in erster Linie auf Unterschiede in den Erzeugungsprofilen der
Windenergie zwischen verschiedenen Ländern zurückzuführen ist. In Kapitel 3 wird die Integration des
Gebäude- und Wärmesektors in den Stromsektor untersucht, unter besonderer Berücksichtigung der Rolle von
Wärmepumpen. Die Auswirkungen auf den Stromsektor in Deutschland von gut sechs Millionen zusätzlichen
Wärmepumpen bis 2030 werden untersucht, unter besonderer Berücksichtigung von Wärmespeichern. Die
Ergebnisse zeigen, dass zusätzliche Wärmepumpen mithilfe der Photovoltaik zu begrenzten Zusatzkosten
eingesetzt werden können. Wärmespeicher spielen dabei eine wichtige Rolle, um den zusätzlichen Bedarf
an Stromspeichern und Erzeugungskapazitäten zu verringern. Insgesamt kann mit der Einführung der Wär-
mepumpen eine erhebliche Reduzierung des Erdgasverbrauchs und der CO2-Emissionen erreicht werden. In
Kapitel 4 wird die gleichzeitige Einführung von Wärmepumpen in mehreren europäischen Ländern untersucht.
Es wird sowohl die Korrelation zwischen der Wärmenachfrage und der Residuallast untersucht, als auch die
Auswirkungen auf Stromerzeugungskapazitäten. Aufgrund der Korrelation der Wärmenachfrage zwischen den
untersuchten Ländern kann der europäische Stromverbund die zusätzlich benötigten Erzeugungskapazitäten
der Wärmepumpen nicht wesentlich verringern. Die Ergebnisse dieses Kapitels heben wieder die positiven
Eigenschaften von Wärmespeichern hervor und zeigen die Schwankungsbreite der Ergebnisse in Abhängigkeit
des verwendeten Wetterjahres. Auch Kapitel 5 analysiert den Wärmesektor, nimmt aber eine empirische Per-
spektive ein und untersucht verhaltensbedingte Gaseinsparungen in Deutschland im Kontext einer drohenden
Gasmangellage im Winter 2022/23. Mithilfe von offenen Daten und kausalem maschinellem Lernen werden
signifikante verhaltensbedingte Gaseinsparungen durch Haushalte und Unternehmen quantifiziert, die zur
Schließung der Versorgungslücke beitrugen. Das temperaturabhängige Einsparverhalten wird analysiert und
die Bedeutung von zeitnah und öffentlich verfügbaren Daten wird unterstrichen, um die Öffentlichkeit und
Politik adäquat zu informieren. Kapitel 6 schätzt die externen Effekte von Windkraftanlagen, insbesondere
mögliche Gesundheitsauswirkungen. Daten deutscher Haushalte des Sozio-oekonomischen Panels (SOEP)
werden mit Informationen zu Windkraftanlagen kombiniert. Mit einem Differenz-in-Differenzen-Ansatz
werden die Effekte geschätzt. Hinweise auf negative gesundheitliche Auswirkungen können nicht gefunden
werden.

Schlüsselwörter: Energiesystemmodellierung, erneuerbare Energien, Flexibilität, Speicher, Wärmepumpen,
Erdgas, Causal Forest, Windkraft, externe Effekte, Gesundheit, Differenz-von-Differenzen-Ansatz





Abstract

This dissertation explores the challenge of decarbonization of the energy sector from different perspectives,
applying various methods. Chapter 1 provides background and motivates the thesis. Chapter 2 assesses
the relationship between geographical and temporal flexibility in a 100% renewable energy scenario across
twelve central European countries. Applying a capacity expansion model and a factor separation method, it
disentangles the impact of interconnection on optimal storage capacity. It can be shown that interconnection
leads to a reduction of 30% in storage needs, primarily attributed to differences in wind power profiles between
countries. Chapter 3 examines the integration of heating into the power sector, particularly the role of heat
pumps. The power sector impacts of a substantial rollout of heat pumps in Germany by 2030 are assessed,
considering buffer heat storage. The results indicate that even in scenarios with limited wind power expansion,
heat pumps, accompanied by solar photovoltaics, can be deployed with limited additional costs. Importantly,
heat storage proves effective in reducing the need for electricity storage and other generation capacities, while
overall, a substantial reduction in natural gas consumption and CO2 emissions can be achieved. Chapter 4
expands the analysis to an international setting, studying a simultaneous rollout of heat pumps in several
central European countries. Assessing the effects on electricity generation capacities, the chapter also explores
the alignment of heating demand with renewable energy scarcities. Because of correlated heat demand
between countries, geographical balancing does not substantially reduce the additional needed generation
capacities. Confirming the results of the previous chapter, thermal energy storage capacities help reduce the
need for additional generation capacities. The chapter also shows that results vary substantially between
different weather years. Chapter 5 remains in the field of heating but takes an empirical perspective and
studies behavioral gas savings in Germany during the 2022-23 heating season prompted by a potential gas
supply shortage. Using open data and causal machine learning, significant behavioral gas savings by German
households and businesses are quantified, contributing to closing the supply gap. Temperature-dependent
saving dynamics are explored, emphasizing the importance of timely and accessible data for informing the
public and policymakers. Continuing with the empirical perspective, Chapter 6 estimates the externalities
of energy infrastructures, focusing on the potential health impacts of wind power plants. Data on German
households of the Socio-Economic Panel (SOEP) is combined with geolocated data on wind power plants.
Applying a staggered difference-in-difference estimation, the analysis finds no evidence of adverse health
effects on nearby residents.

Keywords: energy system modeling, renewable energy, flexibility, storage, heat pumps, natural gas, causal
forest, wind energy, externalities, health, difference-in-differences
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1. Introduction

1.1 Motivation

“Human activities, principally through emissions of greenhouse gases, have unequivocally caused

global warming [. . . ]” states the latest AR6 Synthesis Report: Climate Change 2023 of the

Intergovernmental Panel on Climate Change (IPCC, 2023, p.42). By now, there is robust scientific

evidence that human-caused global warming constitutes an enormous risk for planetary health and

human life. Already in 2007, the “Stern Review” (Stern, 2007) concluded that avoiding global

warming through abatement of greenhouse gas (GHG) emissions is economically far cheaper than the

follow-up costs of global warming. As the central driver for the increase in global mean temperature

lies in the emission of GHGs, primarily carbon dioxide (CO2) and methane (CH4), the reduction of

these emissions is the centerpiece of global climate policies.

The energy sector, specifically the generation of electricity and heat, plays a significant role in

two dimensions. Not only is it one of the sectors with the highest emissions, responsible for 23% of

global GHG emissions in 2019 (IPCC, 2023), but it will gain a central role in the decarbonization due

to the electrification of the economy. The IEA foresees that “[. . . ] electrification emerges as a crucial

economy-wide tool for reducing emissions” (IEA, 2021, p.14) as renewable electricity will be used

in sectors, such as industry, transport, and heating, that are currently still overwhelmingly dependent

on fossil fuels. Therefore, the energy sector has a crucial role in reducing its own emissions and

enabling the decarbonization of other sectors and, hence, the entire economy (Clarke et al., 2022).

As the energy sector is one of the areas with the largest share of GHG emissions, special focus

must be placed on this sector. In particular, the power sector will grow and play a central role in the

future energy system, supplying other sectors with energy. In many regions of the world, especially

in Europe, wind and solar photovoltaics (PV) will provide the largest part of the electricity supply.

Their dependency on wind and sunshine patterns makes them inherently variable, creating unique

challenges to balance the supply and demand of electricity in every moment of time. Consequently,

the electricity sector has to become much more “flexible” adjusting on short notice either supply

or demand to balance the grid. Accordingly, one of the central techno-economic challenges of the

energy sector, specifically the power sector, is to provide sufficient “flexibility”. Some definitions of

flexibility, such as the “ability of conventional generators to vary output and respond the variability

and uncertainty of the net load” (Denholm and Hand, 2011, p.1818), focus mainly on supply. Yet, it

seems more adequate to follow a broader definition of flexibility, such as “flexibility is the capability

to balance rapid changes in renewable generation and forecast errors within a power system” (Bertsch

et al., 2012, p.1).

Various flexibility options exist, but sorting them into demand- and supply-side is inadequate

because options such as storage and grid expansion cannot be easily classified in such categories.

It appears to be more useful to sort options into “Power-to-Power” (e.g., demand side management

such as shifting of load and classical electricity storage), “X-to-Power” (e.g., flexible operation of

dispatchable generators), “Power-to-X” (e.g., “sector coupling” options such (flexible) loads of other
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sectors such as heat and mobility), and finally transmission and distribution grid optimizations and

expansions (Kondziella and Bruckner, 2016; Schill, 2020). However, options can also be categorized

according to other criteria, such as temporal dimensions (Lund et al., 2015), as well as technical and

economic potentials (Kondziella and Bruckner, 2016). Heider et al. (2021) provides an overview of

the different classification schemes found in the literature.

Two of these options, (short- and long-duration) electricity (grid) storage and interconnection

between countries, are regarded as essential for the functioning of a future decarbonized power sector.

Electricity storage provides flexibility on a temporal dimension, shifting excess renewable energy

generation to hours of scarcity, with different time horizons depending on the storage technology.

Interconnection provides flexibility on a geographic dimension, shifting excess or scarcity between

regions by cross-border electricity trades. Through various analyses, the literature has implicitly

established a negative relationship between the size of the geographical area and the need for

electricity storage (Bussar et al., 2014; Child et al., 2019). That coincides with the intuitive idea

that in an interconnected European grid, countries can supply their neighbors with excess energy

if in need instead of using previously stored energy. However, how interconnection and electricity

storage interact and why exactly the former is reducing the latter have not been properly understood.

Chapter 2 sheds light on that topic.

Previously separated sectors, such as heating and transportation, will be connected to the

electricity sector. This is understood as “sector coupling” and will add, on the one hand, flexibility. If

these new consumers, heat pumps, for instance, were operated system-friendly, they could integrate

excess electricity generation of renewable energies that would have been curtailed otherwise, thereby

decreasing overall system costs. On the other hand, sector coupling generates new demand for

electricity as new consumers, such as heat pumps and electric vehicles, will be connected to the grid.

Consequently, sector coupling not only requires new generation capacities to generate the additional

electricity but could even lead to increased electricity demand in already high-demand hours (peak

load), therefore demanding additional flexibility options. The building sector, in particular the

heating of buildings, makes, therefore, an interesting and relevant application of studying flexibility

options. Heating (only encompassing space and water heating of buildings, not industrial heat) is

traditionally provided by fossil fuels, mainly oil and natural gas, in most European countries. In

2019, more than 12% of total GHG emissions in the EU were emitted to heat buildings (Ritchie,

Rosado, and Roser, 2023), which does not even include the emissions of the power sector to generate

electricity used for heating and district heating. Among several technical solutions to decarbonize

heating (Bloess, Schill, and Zerrahn, 2018), the heat pump is considered to be one of the most

promising technical solutions due to its efficiency and ability to use (renewable) electricity directly

(IEA, 2022). Heat pumps “harvest” heat from different sources, such as ambient air or the ground,

bring it to a useful temperature level, and transfer it to the needed place, such as to a heating system

of a building. As they consume electricity, they could add a substantial load to the electricity system

in cold winter months, requiring additional flexibility options. Therefore, attached thermal energy
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storage, in combination with system-friendly operation, could help to reduce peak loads and reduce

system costs. In a country such as Germany, in which almost three-quarters of all housing units

still use gas- or oil-based heating systems, it would be particularly relevant to estimate how much

additional electricity generation capacity would be needed to power a heat pump fleet of six million

units, as planned by the current government for 2030. In addition, the importance of thermal heat

storage, the implied emissions, and natural gas savings are relevant to asses. Chapter 3 touches upon

these topics.

When discussing questions of the power sector, the European market should always be consid-

ered, especially when assessing the widespread use of heat pumps. As heat pumps are inherently

dependent on temperatures, hence weather patterns, it is essential to understand how heat demand

patterns span beyond borders and whether they overlap with renewable energy scarcities. That is

needed to properly estimate the additional electricity generation capacity needs and comprehend

how different flexibility options, specifically thermal energy storage and interconnection, influence

required generation capacities. Chapter 4 addresses these topics.

While the aforementioned topics were viewed primarily from a techno-economic and system

perspective — “what would be the most efficient solution for the entire system?” — all these

challenges can also be regarded from a societal or political perspective. In Germany, but also in other

countries, year-long discussions about the expansion of electricity grids (Weise, 2022) and recently

about heat pumps (Amelang, 2023; Mathiesen, 2023) have shown that — seemingly — technical

topics can become inherently societal and even political. However, it is clear that the upcoming

years will be marked by profound societal and economic changes to enable the transition to a net-

zero economy and adapt to the changes of global warming. Thus, studying and understanding the

individuals’ and companies’ behavior of adaption and reaction is important. The Russian invasion

of Ukraine in 2022 and the subsequent energy price crisis in Europe triggered major aggregated

changes. In that environment, despite difficulties in identifying individual factors, it is relevant to

explain aggregate behavior with adequate methods. Chapter 5 sheds light on the consumer reaction

towards higher prices, political communications, and other factors and estimates the aggregated

natural gas savings.

Another aspect of societal challenges is adaption. In the context of climate change, it is crucial

to understand the adaptation mechanisms of humans to a changing environment (e.g., coping with

higher temperatures), as well as the adaptation to policies that either fight or adapt to climate change.

For instance, in the field of energy, the transition to a decarbonized energy system requires the

installation of new infrastructures on a large scale in new locations. It is important to measure

the impact of installing, for instance, photovoltaic panels, wind power plants, battery systems,

electrolysis, and power lines. Analysis could be undertaken regarding life satisfaction (Zerrahn,

2017), political convictions (Comin and Rode, 2023), and health. Understanding the impact of the

infrastructure is crucial, as local resistance has become a prevalent phenomenon in many countries

(“nimbyism”). If people believe that new infrastructure affects their health negatively, that belief
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might translate to political discontent and resistance. Hence, it is essential to quantify the impact

of infrastructure on health to avoid harming people and to ensure public approval of the sustainable

transition. Wind power plays a crucial role here for two reasons. Firstly, it has a strong visual

and aesthetic impact on the landscape, and secondly, it is considered one of the central pillars of

a decarbonized energy system in Germany, Europe, and many countries worldwide (IEA, 2021).

Therefore, it is especially important to understand the health impacts of wind power plants. Chapter 6

gives some answers to that question.

As highlighted in that section, this dissertation sheds light on techno-economic and societal

challenges in the energy sector. The topics marked above provide a flavor of the width and

complexity of the subject, which any single thesis will naturally never be able to address adequately.

Nevertheless, the wide range of topics could also motivate the wide use of methods. Within

quantitative economics, one could differentiate between “ex-ante” and “ex-post” methods. “Ex-

ante” methods, often theoretical and numerical models, are used to think about interrelationships

and aim to look ahead by simulating and exploring counterfactual scenarios. On the contrary, “ex-

post” methods, typically empirical research, try to understand, identify, and quantify relationships

based on data. Numerical models are one of the principal methods of research in the field of energy.

Very broadly, they can be sorted into “top-down” and “bottom-up” models (Herbst et al., 2012).

With the big picture in mind, top-down modeling aims to explain the relationship between aggregated

variables, such as supply and demand and wants to quantify, for instance, the aggregate consequences

of certain policies. In contrast, bottom-up modeling takes a more granular approach, including more

technological details. They aim to represent the supply and demand of the energy sector, featuring

various technologies and hence can answer more specific questions regarding the energy sector.

Within bottom-up modeling, an often-used modeling approach is linear (cost) optimization models

due to their ability to solve even complex problems in a reasonable time. The analyses in Chapter 2

to 4 apply such a type of model to find a cost-minimal solution given various technical and policy

constraints. While being detailed on one side, many linear optimization models are very simplistic

with respect to economic questions, assuming perfect markets, neglecting uncertainties, and not

considering individual agents.

One challenge in numerical modeling is to properly attribute changes in outcomes to changes in

assumptions and parameters due to the complexity of models. Often, it is difficult to understand how

model results come about or can be interpreted. With the help of factor separation methods (Stein

and Alpert, 1993) and counterfactual model runs, model outcomes can be attributed to input changes.

Chapter 2 applies such a method that had been previously used mainly in climate science to energy

system modeling.

In empirical economics, two major trends have emerged in recent years. One revolves around

causal inference, specifically focusing on achieving “proper” identification of a causal effect instead

of only measuring mere correlations. The “Sveriges Riksbank Prize in Economic Sciences in

Memory of Alfred Nobel” in 2021 was awarded to a group of economists partly “for their
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methodological contributions to the analysis of causal relationships” (The Royal Swedish Academy

of Sciences, 2021). One of the fundamental ideas of causal inference is to formulate a problem in

social science as an experiment with “treatment” and “control” groups. While in pharmaceutical

tests, these groups can be perfectly created, true experiments in social science are rarely possible.

Hence, it is important to uncover “quasi-experimental” settings in which similar groups were affected

differently, which in turn allows for an identification of a treatment effect. One of the most widely

used approaches in econometrics in that context is the “difference-in-differences”. Comparing

averages between groups over time, typically before and after a treatment, such as a policy, allows

for estimating the treatment effect and the causal effect of that policy. In recent years, however,

this method has been criticized for rendering unreliable results if applied in settings of staggered

treatments (Goodman-Bacon, 2021). Numerous new robust estimators have been developed, such as

by Sun and Abraham (2021), as applied in the analysis in Chapter 6.

The second major trend affecting empirical research in economics involves integrating machine

learning methods. Traditionally, machine learning methods were mainly used in prediction due

to their ability to process high dimensional data more efficiently and reliably than traditional

econometric methods. Recently, machine learning techniques have been increasingly integrated into

econometric methods. Among the wide array of machine learning methods, random forests are one

of the most common methods for the classification of data and regression tasks. As an extension of

random forests, causal forests can be used to estimate heterogeneous treatment effects, combining

insights from causal inference and machine learning. In Chapter 5, that method has been applied to

estimate natural gas savings effects.
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Table 1.1: Overview and summary of the chapters

Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6

Title Geographical
balancing of wind
power decreases
storage needs in a
100% renewable
European power
sector

Flexible heat pumps:
must-have or nice to have
in a power sector with
renewables?

Power sector impacts of a
simultaneous European
heat pump rollout

Not only a mild
winter: German
consumers
change their
behavior to save
natural gas

Do Wind
Turbines Have
Adverse Health
Impacts?

General topics Temporal and
spatial flexibility in
the power sector

Electrification of heat,
power sector effects, and
temporal flexibility

Electrification of heat,
power sector effects,
temporal, and spatial
flexibility

Natural gas
demand and
savings in
Germany

Externalities of
energy
infrastructures

Research
question

Why does
geographical
balancing reduce
storage needs, and
what are its causes?

What are the generation
capacity effects of six
million additional heat
pumps in Germany, and
what are the impacts of
thermal energy storage?

What are the generation
capacity effects of a
simultaneous heat pump
rollout in several European
countries, and how is it
impacted by different
flexibility options?

How much
natural gas did
German
consumers save
in the winter
2022?

What are the
health effects of
wind power
plants on people
living in
proximity?

Main finding Heterogeneous
wind power
profiles are mostly
responsible for
reducing storage
needs through
geographical
balancing.

The heat pump expansion
can be managed with
additional solar PV
capacities and moderate
costs, while even small
thermal energy storage
reduce firm capacity needs.

Geographical balancing
has a limited effect on
capacities, while small
thermal energy storage
have a large effect.

German
consumers saved
substantial
amounts of
natural gas in
2022.

No evidence for
physical or
mental effects of
wind turbines are
found.

Approach Numerical
modeling

Numerical modeling Numerical modeling Empirical
analysis

Empirical
analysis

Method Linear
optimization; factor
separation

Linear optimization Linear optimization Causal forest Staggered
difference-in-
difference
estimation

Geographic
scope

12 European
countries

Germany (and ten other
countries as dispatch only)

Nine European countries Germany Germany

1.2 Outline

This dissertation consists of six chapters. While Chapter 1 aims to introduce the reader to the topics

and provides an outline, the Chapters 2–6 shed light on distinct topics. Each of these chapters is based

on an original research article, starting with three chapters applying numerical modeling to questions

of flexibility and heating in the power sector. The topic of heating is followed up in Chapter 5,

now approached from an empirical perspective, whereas Chapter 6 concludes this dissertation using

causal inference applied to the topic of infrastructure externalities. Table 1.1 and Figure 1.1 provide a

tabular and graphical overview of this dissertation. Table 1.2 lists the papers on which the following

chapters are based on, my contributions, and the publication status.
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Providing flexibility is one of the principal challenges for a changing power sector that becomes

not only more fluctuating due to the integration of renewable energies but also more important due

to the integration of other sectors. Chapter 2: Geographical balancing of wind power decreases
storage needs in a 100% renewable European power sector assesses how geographical balancing

enabled by interconnection and electricity storage can provide such flexibility. In a 100% renewable

energy scenario of twelve central European countries, it is investigated how geographical balancing

between countries reduces the need for electricity storage. A principal contribution is to separate and

quantify the different factors at play. By applying a capacity expansion model and a factorization

method borrowed from climate science, the effect of interconnection on optimal storage capacities

through distinct factors is disentangled. The following explaining factors are considered: differences

in countries’ solar PV and wind power availability patterns, load profiles, as well as hydropower and

bioenergy capacity portfolios. The results show that interconnection reduces storage needs by around

30% compared to a scenario without interconnection. Differences in wind power profiles between

countries can explain around 80% of that effect. The analysis in that chapter relies on ten weather

years, increasing the robustness of the results. This chapter not only sheds light on the interplay

between different flexibility options but also successfully applies methods from different fields.

Chapter 1

HealthStorage HeatingInterconnection

Power sector flexibility

Decarbonization of the energy sector

Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6

Numerical Methods Empirical Methods

Figure 1.1: Graphical overview of the chapters
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Sector coupling will increase the importance of the power sector. One of the coupled sectors will

be heating, in which heat pumps will play a crucial role in decarbonizing heating by using renewable

electricity. However, a transition to heat pumps implies increased electricity demand, especially

in cold winter months. In Chapter 3: Flexible heat pumps: must-have or nice to have in a
power sector with renewables?, the power sector impacts of a massive expansion of decentralized

heat pumps in Germany in 2030 are assessed, combined with buffer heat storage of different sizes.

Assuming that the additional electricity used by heat pumps has to be fully covered by renewable

energies in a yearly balance, the required additional investments in renewable energy sources (RES)

are estimated. If wind power expansion potentials are limited, the rollout of heat pumps can also

be accompanied by solar PV with little additional costs, using the European interconnection. The

need for additional firm capacity and electricity storage generally remains limited, even in the case of

temporally inflexible heat pumps. Already relatively small heat storage capacities of two to six hours

can substantially reduce the need for short- and long-duration electricity storage, other generation

capacities, and power sector costs. With respect to reducing energy use and emissions, it is shown

that 5.8 million additional heat pumps in Germany save around 120 Terawatt hour (TWh) of natural

gas and 24 million tonnes of CO2 emissions per year.

The results presented in Chapter 3 quantify the challenges of adding a substantial amount of

heat pumps to the German power sector. However, one important dimension of flexibility, the

interconnection between countries, is not fully developed in the analysis of that chapter. For a better

understanding of the associated challenges, Chapter 4: Power sector impacts of a simultaneous
European heat pump rollout expands the analysis to an international setting. In that chapter, a

simultaneous rollout of heat pumps in several central European countries with an hourly-resolved

capacity expansion model of the power sector is studied. Not only are the effects on generated

capacities assessed but also how hours and periods of elevated heating demand coincide with hours

and periods of renewable energy scarcities. For a 2030 scenario, results show that if 25% of the

total heat demand of buildings would be supplied by heat pumps, the additional electricity would

be covered best with additional wind power generation capacities. In addition, the important role of

small thermal energy storage is highlighted to reduce the need for additional firm generation capacity.

One important finding is that due to the co-occurrence of heat demand, the interconnection between

countries does not substantially reduce the additional generation capacities needed for heat pump

deployment. Importantly, the analysis presented in that chapter is based on six different weather

years, showing the strong heterogeneity of results between them and cautioning against relying on

results coming from a single year.

The topic of heating can be assessed not only from the modeling but also from an empirical

perspective. The year 2022 gave, unfortunately, enough reason for an improved understanding of

the heating system. By the start of the 2022-23 heating season, Germany and many other European

countries faced a potential gas supply shortage in the wake of Russia’s invasion of Ukraine. In search

of a response, authorities called on residential and commercial sectors to save natural gas. Exploiting
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winter 2022-23 as a “natural experiment”, Chapter 5: Not only a mild winter: German consumers
change their behavior to save natural gas sheds light on the magnitude of behavioral gas savings

using open data and a causal forest, a machine learning method. Despite being exposed to incomplete

price signals, significant behavioral gas savings by German households and businesses are found,

contributing to closing the supply gap. Temperature-dependent saving dynamics are uncovered, and

the potential roles of different drivers of this change are discussed. Finally, the pivotal role of a

timely and continuous provision of openly accessible data and analysis to inform the general public

and policymakers is highlighted in that chapter.

Continuing on assessing societal aspects through an empirical perspective, Chapter 6: Do
Wind Turbines Have Adverse Health Impacts? delves into the topic of externalities of energy

infrastructures. As mentioned in Chapters 1-3, wind power is considered key in transitioning towards

a net-zero economy. However, there are concerns about adverse health impacts on nearby residents.

Based on precise geographical coordinates, the analysis in that chapter links a representative

longitudinal household panel to all wind turbines in Germany and exploits their staggered rollout

over two decades for identification to estimate a causal effect. No evidence of negative effects on

general, mental, or physical health in the 12-Item Short Form Survey (SF-12), nor on self-assessed

health or doctor visits are found. Also, no evidence for effects on suicides, an extreme measure of

negative mental health outcomes, at the county level are detected.
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Table 1.2: Chapter origins and own contribution

Chapter Pre-publications & Own Contribution

2
Geographical balancing of wind power decreases storage needs in a 100% renewable
European power sector
A. Roth and W.-P. Schill (2023a). “Geographical Balancing of Wind Power Decreases Storage
Needs in a 100% Renewable European Power Sector”. iScience 26.7. doi:
10.1016/j.isci.2023.107074
Joint work with Wolf-Peter Schill. AR and WS jointly conceptualized the research, analyzed
the data, and wrote the paper. AR curated the data, developed the methodology, and ran the
numerical model. WS initiated the research.

3
Flexible heat pumps: must-have or nice to have in a power sector with renewables?
A. Roth, D. Kirchem, et al. (2023). “Flexible Heat Pumps: Must-Have or Nice to Have in a
Power Sector with Renewables?” arXiv preprint arXiv:2307.12918 [econ.GN]. doi:
10.48550/arXiv.2307.12918, revise & resubmit by Communications Earth & Environment.
Joint work with Dana Kirchem, Carlos Gaete-Morales, and Wolf-Peter Schill. AR curated the
data (with CG, DK), developed the methodology (with CG, DK, WS), ran the numerical
model (with DK), analyzed the data (with DK, WS), and drafted the manuscript (with DK).
WS initiated and conceptualized the research.

4
Power sector impacts of a simultaneous European heat pump rollout
A. Roth (2023). “Power Sector Impacts of a Simultaneous European Heat Pump Rollout”.
arXiv preprint arXiv:2312.06589 [econ.GN]. doi: 10.48550/arXiv.2312.06589
Single-author original research article.

5
Not only a mild winter: German consumers change their behavior to save natural gas
A. Roth and F. Schmidt (2023). “Not Only a Mild Winter: German Consumers Change Their
Behavior to Save Natural Gas”. Joule, S2542435123001733. doi: 10.1016/j.joule.2023.05.001
Joint work with Felix Schmidt. AR and FS jointly conceptualized the research, curated the
data, developed the methodology, analyzed the data, and wrote the manuscript. FS did the
empirical analysis. AR initiated the research.

6
Do Wind Turbines Have Adverse Health Impacts?
C. Krekel, J. Rode, and A. Roth (2023). “Do Wind Turbines Have Adverse Health Impacts?”
DIW Discussion Papers 2054. doi: http://hdl.handle.net/10419/279485
Joint work with Christian Krekel and Johannes Rode. AR, CK, JR jointly conceptualized the
research and analyzed the results. AR curated the data and did the empirical analysis. CK and
JR wrote the manuscript. AR edited and reviewed the manuscript. CK and JR initiated the
research.
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1.3 Conclusion

This dissertation aims to provide a multifaceted view of the challenges of decarbonizing energy,

with a focus on the crucial role of the electricity sector in achieving this goal. The importance of the

electricity sector lies not only in reducing emissions but also in facilitating the decarbonization of

other sectors, as discussed in Chapters 2 to 4. While the results of Chapter 2 show the importance of

geographical balancing in reducing storage, the insights of Chapter 4 highlight that interconnection

does not add much flexibility to balance the electricity demand of heat pumps. Small thermal

energy storage appears to be more effective, as highlighted in Chapter 3 and 4. Further research

should concentrate on the interaction of different flexibility options. Extending an analysis, such

as the one of Chapter 2, to more countries and including other flexibility options could generate

vital insights into the functioning of a future power sector. Geographical aspects, such as including

several countries or regions, and temporal aspects, including various weather years, are central to a

comprehensive understanding.

The research presented in Chapter 3 and 4 invites integrating heating even more into power sector

models to gain an improved understanding of the interactions between conventional load and heating.

Given the growing importance of heating in the power sector, it is also paramount to think more

precisely about consumer behavior and how to represent that adequately in power sector models.

Many aspects of modeling demand, such as consumer behavior and industrial production, appear to

be very relevant for the future due to the increasing importance of demand in providing flexibility

(Pfenninger, Hawkes, and Keirstead, 2014; Fodstad et al., 2022). With growing importance due to

sector coupling, power sector models are and will have to be enhanced by other sectors and energy

carriers (Fodstad et al., 2022). Future research will have to assess further integration of different

models and sectors: might top-down models become more “bottom-up”, while top-down models

become more “bottom-up”? The integration of different model types or even the creation of “hybrid”

models will remain a challenge (Herbst et al., 2012).

In the wake of the European energy crisis in 2022, aggregate natural gas consumption became a

topic of general interest, and the results shown in Chapter 5 suggest that considerable savings were

achieved in Germany. A promising research avenue would be to further disentangle the aggregate

savings. It would be relevant to quantify how much of the savings can be attributed to price changes,

political communication, beliefs, or other factors. Also, it would be highly interesting to uncover

group-specific savings patterns to estimate whether households or small businesses were the principal

drivers for the savings. Furthermore, the nature of savings, whether they were driven by changes in

behavior, investments into efficiency, or reduction of output, is of high interest. Analyzing some of

these effects would be timely and relevant for policymakers. Similar analyses for other European

countries could shed light on differences between countries in Europe. Finally, it seems promising to

further apply machine learning methods in the field of energy, complementing and even enhancing

numerical modeling.
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1.3 Conclusion

The importance of wind power plants, especially to facilitate the deployment of additional heat

pumps, has been highlighted throughout this dissertation. The results presented in Chapter 6 shed

light on the health effects of wind turbines on people living in their proximity, with no effect being

detected. However, the current analysis is also restricted by sparse data. With better and more

granular data, e.g., administrative health data and more detailed geographic data, even more precise

effects could be estimated. For instance, one could assess possible effects on people living in very

close proximity. As infrastructure is likely to have very diverse impacts, estimating heterogeneous

treatment effects seems very relevant. Importantly, further empirical research has to assess the nature

of resistance against the infrastructure needed for a sustainable transition. Questions of fairness

and procedural justice in newly built projects and the equitable distribution should be addressed.

If empirical research could estimate how local resistance against infrastructure is formed, future

energy modeling applications could include these estimates to better define the upper bounds of

certain technologies or to calculate trade-offs. Combining empirical and modeling methods could

lead to valuable insights.
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2. Geographical balancing of wind power decreases storage needs in a 100% renewable European
power sector

2.1 Introduction1

The massive expansion of RES is a major strategy to mitigate GHG emissions (IPCC, 2022).

Thus, many countries have ambitious targets for increasing renewable shares in their power sectors

(REN21, 2022). For example, the G7 countries aim for “achieving a fully or predominantly

decarbonized power sector by 2035” (G7, 2022). As the potentials for firm renewable generation

technologies such as geothermal and bioenergy are limited in most countries, much of the projected

growth needs to come from variable RES, e.g., wind power and solar PV (Child et al., 2019).

As these depend on weather conditions and daily and seasonal cycles, their electricity generation

potential is variable (López Prol and Schill, 2021). Increasing their share in the electricity supply

thus requires additional flexibility of the power system to deal with their variability (Kondziella and

Bruckner, 2016). Geographical balancing, i.e. transmission of electricity between different regions

and countries, is a particularly relevant flexibility option (Schlachtberger et al., 2017). This allows for

balancing renewable variability over larger areas, using differences in load and generation patterns.

Aside from such spatial flexibility, various temporal flexibility options can be used to manage the

variability of wind and solar PV, particularly different types of electricity storage (Schill, 2020).

Both geographical and temporal balancing can help to integrate surplus renewable generation and to

meet residual load that could not be supplied by variable renewable sources at a particular location.

From a techno-economic perspective, geographical balancing, using the electricity grid, and

temporal balancing, using electricity storage, are substitutes for one another to a certain degree.

Therefore, the need for storage capacities in a specific region decreases if electricity can be

exchanged with neighboring areas that have partly uncorrelated weather and demand patterns.

In an application to twelve central European countries, we investigate the interactions between

geographical and temporal balancing, enabled by electricity storage, in a future 100% renewable

energy scenario. We do not aim to estimate the optimal amount of interconnection to be built;

instead, we are interested in identifying and quantifying the drivers of why interconnection with

neighboring countries mitigates electricity storage requirements. In terms of storage, we differen-

tiate between “short-duration” storage, parameterized as lithium-ion batteries, and “long-duration”

storage, parameterized as power-to-gas-to-power storage. We analyze the effects on both storage

types separately. First, we measure the substitution effect between interconnection and storage by

comparing the optimal storage capacities of two stylized least-cost power sector scenarios: in one,

electricity interconnection between countries is allowed; in the other, it is not. Then, we define

several factors that can explain the reduced need for storage capacities in an interconnected electricity

sector compared to one without interconnection. Finally, we quantify the magnitude of the different

factors.
1Two anonymous reviewers, the members of the research group Transformation of the Energy Economy at DIW Berlin

and participants of the PhD Strommarkttreffen 2021, the Enerday 2021, IAEE Online Conference 2021, the DIW GC
Workshop 2021, the FSR Summer School 2021, and the YEEES 2022 Copenhagen are thanked for very helpful comments
and feedback. Financial support from the German Federal Ministry of Economic Affairs and Climate Action (BMWK)
via the project MODEZEEN (FKZ 03EI1019D) is gratefully acknowledged.
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2.1 Introduction

We focus on five different factors to explain the storage-reducing effect of geographical balanc-

ing: differences between countries in hourly capacity factors of (1) wind and (2) solar PV, which

are a function of spatially heterogeneous weather patterns and daily and seasonal cycles; (3) hourly

time series of the electric load; and the availability of specific technologies such as (4) hydropower

and (5) bioenergy that differ due to geographic or historical factors. A capacity factor determines

how much electricity a power plant can produce in a given hour compared to its installed capacity.

E.g., a capacity factor of 50% in a given hour means that a wind power plant with a power rating of

10 Megawatt (GW) produces 5 Megawatt hour (MWh) in that hour.

To determine the importance of each factor for storage capacity, we employ a factor separation

method (Stein and Alpert, 1993; Lunt et al., 2021), which attributes model outcomes to different

model inputs. This can be achieved by systematically varying only specific model inputs and

comparing the outcomes of selected model runs. At the core of the analysis lies a comparison

between an interconnected central European energy system with interconnection capacities foreseen

by regulators (ENTSO-E, 2018a) and a counterfactual system without any interconnection. The

difference in optimal storage deployed by the model can be explained with the factor separation

method.

To generate these model outcomes, we use an open-source model of the European electricity

system that minimizes total system costs given an hourly exogenous electricity demand in each

county. The model determines endogenously optimal investment and hourly usage of different

generation and storage technologies for each country to meet the energy demand as well as other

policy-related constraints, such as minimum-renewable requirements. Thus, market clearing is

achieved every hour. The solution of a cost-minimizing model represents a long-run equilibrium

in which, under idealized assumptions, all generators and storage assets exactly cover their fixed and

variable costs with their revenues. The model comprises twelve central European countries that are

connected in a “net transfer capacity model” with fixed interconnection capacities. For increased

robustness, our analysis considers ten weather years from a 30-years period.

Several studies have estimated electricity storage needs in Europe in scenarios with high shares of

renewables. Literature reviews identify a positive, linear relationship between renewable electricity

shares and optimal electricity storage deployment (Cebulla et al., 2018; Blanco and Faaij, 2018).

Focusing on single countries, such as Germany, various analyses find that storage needs depend on

the model scope, e.g., on the number of sector coupling technologies included and on how detailed

these are modeled, as well as on the availability of other flexibility options (Weitemeyer et al., 2015;

Babrowski, Jochem, and Fichtner, 2016; Scholz, H. C. Gils, and R. C. Pietzcker, 2017; Schill and

Zerrahn, 2018). Other studies investigate how much storage is needed in the wider European power

sector. While results again depend on model and technology assumptions, studies covering several

European countries imply relatively lower storage needs than analyses focusing on a single country

only (Bussar et al., 2014; Després et al., 2017; Child et al., 2019; Moser, H.-C. Gils, and Pivaro,

2020). Other analyses investigate the need for electricity storage in the U.S. (Safaei and W. Keith,
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2015; De Sisternes, Jenkins, and Botterud, 2016; Phadke et al., 2020). For instance, long-duration

storage requirements in Texas increase with growing penetration of variable RES (Johnson et al.,

2021). Related studies derive similar findings and also conclude that interconnection decreases

storage needs, focusing on other parts of the U.S. (Ziegler et al., 2019) or the whole of the United

States (Tong et al., 2020; Dowling et al., 2020; P. R. Brown and Botterud, 2021; Bloom et al.,

2022). Similarly, geographical balancing and electricity storage are identified as partial substitutes

in a model analysis of the North-East Asian region (Bogdanov and Breyer, 2016). This substitution is

considered to be particularly relevant for long-duration storage technologies (Jenkins and Sepulveda,

2021). Various papers have analyzed wind and/or solar PV variability and its impacts on the future

energy system, partly focusing on extreme energy drought events (Collins et al., 2018; Raynaud

et al., 2018; Cannon et al., 2015; Ohlendorf and Schill, 2020; Weber et al., 2019). Yet, none of

these studies focus primarily on quantifying the effect of interconnection on storage needs or on

systematically isolating individual drivers of this effect.

Hence, we contribute to the literature by illustrating how spatial flexibility influences the need

for temporal flexibility in an application to twelve central European countries. Our principal

contribution is to quantify how different factors contribute to the reduction in storage capacity

caused by geographical balancing. To identify the importance of these different factors, we use

an adapted “factor separation” method (Stein and Alpert, 1993; Lunt et al., 2021). As there is so far

no established method to attribute outcomes of power market models to changing model inputs, we

propose a modified procedure that builds on counterfactual scenarios and factor separation, which

could also be used in other energy modeling applications. We are the first to employ factor separation

in the context of energy modeling, using it to quantify the importance of which factors drive down

storage needs in an interconnected central European energy system.

2.2 Methods

2.2.1 Factorisation method

Factorization (also known as “factor separation”) is used to quantify the importance of different

variables concerning their changes in a system. In complex systems, where more than one variable

is altered simultaneously, it can be used to identify the importance of these variables for the changes

in outcomes. Therefore, it can be used to analyze the results of numerical simulations (Lunt et al.,

2021).

There are several factorization methods, and our analysis builds on the factorization method by

“Stein and Alpert” (Stein and Alpert, 1993) and its extension, the “shared-interactions factorization”

(Lunt et al., 2021). The basic principle of factorization relies on comparing the results of various

counterfactual scenarios to separate the influence of different factors on a specific outcome variable.

For a broader introduction to factor separation, we refer to the Supplemental Information (A.3) and

to a recent paper (Lunt et al., 2021) providing an excellent introduction and overview.
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To decompose the changes in storage needs, we define six factors that will impact the need for

storage. Each factor can take two different states, which, to ease explanations, we call A and B.

Table 2.1 provides an overview of all factors and their possible states.

Factor State A State B

(1) Interconnection not allowed allowed

(2) Wind harmonized not harmonized

(3) Solar PV harmonized not harmonized

(4) Load harmonized not harmonized

(5) Hydropower harmonized not harmonized

(6) Bioenergy harmonized not harmonized

Table 2.1: Factors and states

To determine the magnitude of the different factors, we compare model outcomes of different

scenario runs. We compare a default “real-world” setting to a counterfactual setting. In the

counterfactual setting, corresponding to state A, all factors are harmonized which means that their

respective cross-country variation is eliminated. In contrast, in the state B not harmonized, all

countries exhibit their own solar PV capacity factors. The same logic generally applies to the other

factors as well. A more detailed definition and explanation of the factors is provided in the next

section 2.2.2.

In contrast to other applications of factor separations, we are not interested in the entire effect

of each factor on storage needs. To identify which factors are most important in influencing storage

needs through interconnection, we focus instead on the “interaction terms” between interconnection

(1) and the other factors (2)-(6).

To identify the influence of the factors, we run several counterfactual scenarios. The notation

to define the different factors is as follows. Whenever a factor is in state B, hence allowed or

not harmonized, a subscript with the respective number is added. If the factor is in state A, no

subscript 1-6 is added. The scenario in which all factors are in state A is called f0, hence all

factors are harmonized, and no interconnection is allowed. In this scenario, all modeled countries

are very similar, i.e., they have the same capacity factors, load patterns, and equal relative installed

hydropower and bioenergy capacities. The scenario f1 is nearly identical, with the expectation that

interconnection is allowed as it is indicated by subscript 1, pointing to the factor interconnection.

Following that logic, scenario f2 resembles f0, except that factor (2), i.e., wind, is not harmonized.

Following that structure, we can define and name all relevant scenarios. For instance, f12 denotes the

scenario in which interconnection is allowed, and wind capacity factors are not harmonized, yet all

the other factors are in their state A, hence harmonized.

Of all possible scenarios, two are of special interest:
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• f123456: This scenario can be regarded as our “default” scenario with no capacity factors or

power plant portfolios being harmonized and interconnection between countries allowed.

• f23456: This scenario equals the previous one, with the only difference that interconnection

between countries is not allowed. Thus, all countries operate as electric islands.

We aim to explain the difference in optimal storage energy and power installed between these

two scenarios f123456 and f23456, and to attribute the difference to the various factors (2)-(6). To

quantify the importance of the different factors, we calculate the size of interaction factors between

factor interconnection (1) and the other factors (2)-(6).

The size of the individual factors can be defined as differences between scenario runs. These are

denoted f̂ 1, f̂ 2, ..., f̂ 12, ..., etc. f̂ 1 is the sole effect of factor (1) by comparing the scenarios f0 and

f1:

f̂ 1 = f1 − f0. (2.1)

As described above, we rely on the interaction effects of factors for our attribution. The definition

of interaction effects is more complicated and requires the results of several scenarios. For instance,

the combined effect of the factors (1), (2), and (3), denoted f̂ 123, is defined as:

f̂ 123 = f123 − ( f12 + f13 + f23) + ( f1 + f2 + f3) − f0 (2.2)

Put in words, f̂ 123 measures only the combined influence of the factors interconnection (1), wind (2),

and solar PV (3) on storage need, hence the interaction effect. The (direct) effects of the factors (such

as f̂ 1) are not comprised.

To quantify the importance of different factors of interconnection on storage, we first define the

“difference of interest” (INT), which we define as:

INT = f123456 − f23456. (2.3)

Then, we quantify which factors explain most of this difference. INT can be written as the sum of

all interaction factors between the different factors (2)-(6) and the interconnection factor (1). Hence,

every element of that sum has to comprise at least factor (1). It can be shown that the difference INT

is the sum of all the interaction factors where interconnection is involved, therefore

INT = f̂ 1 + f̂ 12 + f̂ 13 + · · · + f̂ 16 + f̂ 123 + · · · + f̂ 156

+ f̂ 1234 + · · · + f̂ 1456 + f̂ 12345 + · · · + f̂ 13456 + f̂ 123456. (2.4)

To calculate the contribution of one of the factors on the difference of interest, INT , we collect

all interaction effects between the factor interconnection (1) and the respective other factor. For

instance, to quantify the contribution of the factor wind (2), we sum up all interaction effects that
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include the factors interconnection (1) and wind (2). The principal interaction effect f̂ 12 is part of

it, but, e.g., also the interaction effects between interconnection, wind, and solar PV: f̂ 123. To avoid

double-counting, we have to distribute these shared interaction effects between - in this case - the

factors wind and solar PV. There are different ways to distribute these effects. We use the “shared-

interactions factorization” (Lunt et al., 2021) that distributes the interaction effects equally between

the different factors. Hence, the total interaction effect between the factors interconnection and wind

can be defined as follows:

f̂
total
12 = f̂ 12 +

1
2

f̂ 123 +
1
2

f̂ 124 + ... +
1
3

f̂ 1234 + ... +
1
5

f̂ 123456 (2.5)

Similarly, we define the interactions between interconnection and solar PV as f̂
total
13 , between

interaction and load as f̂
total
14 , between interaction and hydropower as f̂

total
15 , and between interaction

and bioenergy as f̂
total
16 .

All these interaction terms f̂
total
1i add up to our difference of interest:

INT = f̂
total
12 + f̂

total
13 + f̂

total
14 + f̂

total
15 + f̂

total
16 . (2.6)

To determine the contribution of each factor (wind, solar PV, load, etc.) to the change in optimal

storage capacities facilitated through interconnection, we calculate their share s. For instance, for

the factor wind, this share reads as

swind = f̂
total
12 /INT . (2.7)

As we have defined six factors, we need to run 26 = 64 scenarios for a complete factorization of

one weather year. As we perform our analysis for ten different weather years, we run 640 different

scenarios (see Table A.5 for an illustrative overview).

2.2.2 Definition of factors

The basic principle to quantify how different factors impact optimal storage through interconnection

is the use of counterfactual scenarios, in which the state of these factors is varied. For all our

factors, we define two states in which they can exist. For most of the factors, these states are

not harmonized and harmonized, in which, in the latter, all countries are made equal to eliminate

the variation between countries. By “making equal”, we refer to a counterfactual scenario in

which differences between countries, such as different renewable energy availability time series or

hydropower availabilities, are eliminated.

We define five factors we consider to be most relevant. The two factors “wind” and “solar

PV”, covering most of the energy supply, are associated with the variable capacity factors of these

technologies. Another factor is “load” which covers energy demand. The two factors “hydropower”

and “bioenergy” relate to different inherited power plant portfolios in different countries. Finally,
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the factor “interconnection” is defined only to make the analysis operational, not to explain reduced

storage needs.

Wind The factor that captures the impact of wind patterns is operationalized with the help of

capacity factors and takes two different states: not harmonized or harmonized. In the state not

harmonized, every country has its own capacity factor time series, as provided by the database used

(De Felice, 2020) (more information in Section A.1) given the specific weather year. On the contrary,

in the state harmonized, capacity factors are equal in all countries using the capacity factors of our

reference country Germany. Hence, the entire variation between countries in wind power capacity

factors is taken away.

On top of that, we also have to account for geographic differences in offshore wind power, which

cannot be deployed in all countries because of differences in access to the sea. In contrast to onshore

wind power and solar PV which could be, in principle, deployed everywhere, offshore wind power,

like hydropower, cannot. In the state harmonized, not only do the capacity factors have to be the

same across all countries, but also all countries have to operate “as if they are the reference country”

(Germany in our case). Therefore, in the state harmonized, all countries exhibit the same share of

offshore wind power plants. That share is defined as installed capacity divided by the total yearly

load. We use the total yearly load as the denominator as it is not related to the power plant fleet but

is still country-specific. If we used the share of installed power plant capacity, the model would have

the incentive to change the total power plant fleet, which we have to avoid. This share is determined

based on a scenario run of our reference country, Germany, in isolation.

Using this approach implies, given the share is larger than zero, that countries without sea access,

e.g., Austria or Switzerland, have offshore wind power plants in the state harmonized. Although this

is clearly not realistic, this harmonization step - including the application of the share - is necessary

to take away all the cross-country variation of capacity factors, and also geographic differences such

as access to the sea. In the state harmonized, all countries act as if they were the reference country

in isolation.

Solar PV The factor solar PV, like wind power, takes two states. The state not harmonized

corresponds to the default with solar PV capacity factors as provided by our data source. In the

harmonized case, solar PV capacity factors are equal in all countries using those of our reference

country. Hence, all variation between countries in solar PV capacity factors is taken away.

Load The definition of the factor “load” is similar to factors “wind power” and “solar PV”. In the

state harmonized, all countries have the same load time series as our reference country, yet scaled to

their original total yearly demand. Therefore, in the state harmonized, all countries have the same

load profile (same as the reference country Germany) but on country-specific levels.

22



2.2 Methods

Hydropower In addition to differences in wind, solar PV, and load patterns, we also aim to quantify

how much of the storage capacity reduction can be attributed to specifics of the existing power plant

portfolios because of legacy capacities and limited expansion potentials. Hydropower, comprising

reservoirs, pumped-hydro, and run-of-river, can be considered to be exogenous. Some countries

happen to have them, while others do not. Also, their installed generation capacities are considered

to be exogenous.

In the state harmonized, all countries have the same share of installed power plant capacities of

the respective technologies. We treat all countries as if they had a power plant portfolio like the

reference country in isolation. In the case of hydropower, we also assume the German hydro times

series for the other countries. These shares are determined based on a scenario run of our reference

country, Germany, in isolation. We calculate the relative weight of the exogenous technologies as a

share of installed capacity over the total yearly load. In the state harmonized, this share is applied to

all countries. For a detailed explanation regarding the shares, we refer to paragraph Wind above.

Bioenergy The definition of the factor bioenergy closely follows the one of hydropower described

above. In the state harmonized, all countries have the same share of installed bioenergy power plant

capacities. We consider all countries as if they had a power plant portfolio in isolation like the

reference country.

Interconnection The factor interconnection is needed to make the factor separation operational.

Like the other factors, it has only two states. In contrast to the other factors, they are called not

allowed and allowed and determine whether electricity flows between countries is possible. In the

state allowed, interconnection is allowed and the interconnection capacities between countries are

fixed, as given in Table A.4. If interconnection is not allowed, electricity flows between countries

are not possible.

2.2.3 Model

To obtain the model results needed for the factor separation, we use the open-source capacity

expansion model DIETER (Zerrahn and Schill, 2017; Gaete-Morales, 2021), which has previously

been used for detailed long-term electricity sector planning analyses (Schill and Zerrahn, 2018;

Say, Schill, and John, 2020; Stöckl, Schill, and Zerrahn, 2021; H. C. Gils, Gardian, Kittel, Schill,

Murmann, et al., 2022; van Ouwerkerk et al., 2022) and for more stylized illustrations (Schill, 2020;

Kittel and Schill, 2022; H. C. Gils, Gardian, Kittel, Schill, Zerrahn, et al., 2022). It minimizes

total power sector costs for one year, considering all 8760 consecutive hours. DIETER focuses on

the temporal flexibility of renewable integration. It assumes unconstrained electricity flows within

countries. In this application, the model comprises 12 central European countries: Austria, Belgium,

Czechia, Denmark, France, Germany, Italy, Netherlands, Poland, Portugal, Spain, and Switzerland

(Figure A.1). In scenarios in which electricity exchange between countries is allowed, countries
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are connected with a transport model based on Net Transfer Capacity (NTC). These are fixed

according to an ENTSO-E scenario (Table A.4); an expansion or reduction of these cross-border

interconnection capacities is not possible. The model does not consider transmission or distribution

bottlenecks within a country.

Endogenous model variables of interest are the installed capacity of on- and offshore wind power

and solar PV and the installed capacity of short- and long-duration storage, differentiated by storage

energy, as well as charging and discharging power. Further model outputs are hourly patterns of

electricity generation and curtailment (of renewables), the charging and discharging patterns of

storage, and the power exchange between countries.

Exogenous model inputs include techno-economic parameters such as investment and variable

costs, the time series of capacity factors of wind and solar PV, and electricity demand. Electricity

demand is assumed to be price-inelastic. To ensure the relevance of our results, we impose certain

bounds on the investments of some generation technologies. In particular, we consider the installed

storage energy and power capacities of different types of hydropower plants (run-of-river, reservoir,

pumped-hydro) and the installed generation capacity of bioenergy to be exogenous, without any

possibility of additional investments. Accordingly, there is no need to additionally cap the yearly

electricity generation of bioenergy. Only a subset of countries can install offshore wind power. In

Section A.1, we provide more details on assumptions and the input data.

Model results can be interpreted as the outcomes of an idealized, frictionless central European

electricity market in which all generators maximize their profits. Real-world market outcomes may

differ from this benchmark because of various frictions, i.e., limited information of market actors or

barriers to market entry. Note that single countries do not possess individual objective functions, but

costs are minimized for the overall interconnected power sector.

For robustness, we do not perform our analysis only for a single weather year only, but for ten

different ones covering nearly three decades, i.e., 1989, 1992, 1995, 1998, 2001, 2004, 2007, 2010,

2013, and 2016. Between these weather years, the time series of renewables, load, and hydro inflow

time series differ.

2.3 Results

Employing a factor separation approach in combination with a numerical energy sector model, we

determine by how much interconnection between countries decreases the overall optimal storage

energy and power capacity of the energy system (Section 2.3.1). Afterward, we attribute the

change in storage capacity to different drivers (Section 2.3.2) and explain the key mechanisms

(Section 2.3.3).
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2.3 Results

2.3.1 Geographical balancing reduces optimal storage power and energy capacity

A

C

B

D

Short-duration storage 
(energy)

Long-duration storage 
(energy)

Short-duration storage 
(discharging power)

Long-duration storage 
(discharging power)

Notes: The figure shows energy capacities (Panel A and B) and discharging power (Panel C and D) capacities
of short- and long-duration storage aggregated over all countries. Every dot is the scenario result based on one
weather year. The middle bar shows the median value. The box shows the interquartile range (IQR), which
are all values between the 1st and 3rd quartile. The whiskers show the range of values beyond the IQR, with
a maximum of 1,5 x IQR below the 1st quartile and above the 3rd quartile.

Figure 2.1: Aggregate installed storage energy and discharging power capacity

We find that aggregated optimal storage capacity is substantially lower in an interconnected system

than in a system of isolated countries (Figure 2.1). This applies to both short- and long-duration

storage, as well as to storage discharging power and energy. Interconnection reduces optimal

energy capacity need of short- and long-duration storage on average by 31% over all years modeled.

Discharging power, on average, decreases by 25% for short-duration and by 33% for long-duration

storage. This translates to a reduction of 36 TWh in storage energy and 74 Gigawatt (GW) in storage
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discharging power (short- and long-duration storage combined) for the modeled interconnected

central European power sector with 100% RES.

These results confirm previous findings in the literature that a system with interconnection

requires less storage than a system without or put differently, that geographical balancing of variable

renewable electricity generation across countries mitigates storage needs. We show that this also

holds in a scenario with 100% renewable energy. The variation of results between weather years is

substantial, as optimal long-duration storage varies between 95 TWh and 140 TWh depending on

the weather year. However, our results indicate that the storage-reducing effect of interconnection is

robust to different weather years.

2.3.2 Wind power is the largest driver for mitigating storage needs

A

C

B

D

Short-duration storage 
(energy)

Long-duration storage 
(energy)

Short-duration storage 
(discharging power)

Long-duration storage 
(discharging power)

Notes: The figure shows the average relative contributions of different factors to the reduction in storage
energy (Panel A and B) and discharging power (Panel C and D) capacity due to interconnection. The average
is taken over all ten weather years included in the analysis.

Figure 2.2: Relative factor contribution to storage mitigation
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Using counterfactual scenarios and a factorization method (more information in Section 2.2.1), we

can attribute the decrease in optimal storage needs to individual factors. Wind power contributes by

far the most, namely 80%, to reducing storage discharging power and energy (Figure 2.2).

Especially for short-duration storage, differences in load profiles also contribute substantially

to the storage-mitigating effect of interconnection. These account for 26% of the decrease in short-

duration storage discharging power (Figure 2.2, Panel C). In contrast, differences in solar PV have, on

average, a small increasing effect on short-duration storage energy and discharging power. However,

this effect is strongly heterogeneous, depending on the weather year. For instance, solar PV can

explain in some years up to 13% of the drop in storage energy and 8% of the drop in discharging

capacity, yet in turn, has even a storage-increasing effect in other years (Figure A.2). Allowing for

transmission between countries may increase optimal overall solar PV investments, all other factors

being constant and homogenized; this is because capacities grow in countries with higher solar PV

full load hours, i.e., with lower solar PV costs. In turn, the need for short-duration storage then

increases compared to a setting without transmission between countries because of higher diurnal

fluctuations.

In the case of long-duration storage, all investigated factors contribute to the reduction of optimal

storage investments enabled by interconnection. While wind power is again clearly dominating,

differences in hydropower capacity, load curves, and solar PV time series almost equally contribute

to reducing storage needs.

While Figure 2.2 depicts average values, using ten weather years, results for individual years

vary (see Figure A.2 for more detail). Especially the contribution of wind power strongly differs

between weather years. However, the relative contributions of the factors are qualitatively robust. In

all analyzed weather years, we find that wind power is the dominating factor.

Figure 2.2 shows the already aggregated factors. In the supplemental information A.5, we

provide further information on the magnitude of all factors from the factorization in all weather

years (Figure A.3) and in weather year 2016 (Figure A.4).
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2.3.3 An explanation of key mechanisms

A Generation in the (combined) peak 
residual load hour

B Largest positive residual load events

Notes: Panel A: The left bar shows the sum of electricity generation in the different countries’ peak residual
load hours, while the right bar shows the system-wide generation in the peak residual load hour of the
interconnected system. Both bars depict the aggregate values of all countries. Panel B: Each country’s largest
positive residual load event is depicted. Countries with large hydro reservoirs are excluded as they have
fundamentally different residual load events. Due to the existence of reservoirs, they accumulate large positive
residual load events over the year. Both panels show results of the weather year 2016.

Figure 2.3: The drivers of reduced storage need: peak residual load hours and positive residual events

To explain these results, we illustrate the key mechanisms using the weather year 2016. We turn

to the peak residual load hour as a central driver to explain the drop in optimal storage discharging

power capacity through interconnection. The peak residual load hour is defined as the hour in which

residual load (i.e., load minus generation by variable renewable sources) is largest in a year. In

an energy system based on 100% renewables and high shares of wind and solar PV, load in that

critical hour has to be provided mainly by storage. Hence, the residual load peak hour determines

the required storage discharging power capacity.

When we compare an energy system without and with interconnection, the following thinking

applies. In a system without interconnection, every country has to satisfy its own peak residual hourly

load. Therefore, the overall (sum of all countries) storage discharging power needed in this system

is simply the sum of all the countries’ individual peak residual loads minus other existing generation

options, such as bioenergy or hydro reservoirs. This simple addition is not true for an interconnected

system if the countries’ peak residual load hours do not coincide temporarily. Then, peak residual

load hours in individual countries can potentially be compensated by geographical balancing, i.e.,

imports. Therefore, the overall storage discharging power needed in an interconnected system is

most likely smaller than the sum of the countries’ peak residual loads.
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The left bar of Figure 2.3, Panel A, shows the sum of electricity generation in the different

countries’ peak residual load hours, while the right bar shows the system-wide generation in the peak

residual load hour of the interconnected system. The two differ because peak residual load hours do

not align in the different countries. Implicitly, this reasoning assumes that there would be no limit on

interconnection capacity between countries. In our case, net transfer capacities (NTC) are limited,

so the residual peaks cannot be balanced out completely. Yet, even with limited interconnection,

the non-aligned peak residual load hours of the different countries help to reduce residual storage

discharging power needs.

A similar reasoning applies to explain the reduced need for storage energy. The size of needed

storage energy is correlated to the largest positive residual load event. We define a positive residual

load event as a series of consecutive hours in which the cumulative residual load stays above zero. It

may be interrupted by hours of negative residual load as long as the cumulative negative residual load

does not outweigh the positive one. As soon as it does, the positive residual load event is terminated.

These events typically occur when sunshine and wind are absent for long periods.

An energy system with interconnection needs less storage energy if the countries’ largest positive

residual load events do not fully coincide. In this case, geographical balancing can help to flatten out

these events. On the contrary, in a system without interconnection, all these events have to be covered

in and by each country individually; hence, the aggregate storage energy needs in a system without

interconnection is the sum of every country’s largest positive residual load event, and, therefore,

higher than in a system with interconnection. Figure 2.3, Panel B, depicts the large positive residual

load events for the year 2016 for different countries. Although some events overlap between the

countries, many do not, and thus, interconnection helps reduce the need for storage energy capacity.

As shown in the previous section, wind power is the principal factor that drives down storage

needs when interconnection between countries is possible. Peak residual load and the largest positive

residual load event largely determine storage needs. Therefore, the decrease in peak residual load

and also in the largest residual load events are largely driven by the heterogeneity of wind power

between countries. This can be confirmed in the data. In the hour of a country’s highest residual

load, onshore wind power capacity factors of most countries are still relatively high, so geographical

balancing could help to make use of them (Figure 2.4, Panel A). In contrast, this is hardly the case

for solar PV capacity factors. The peak residual load hour of most European countries is likely to

be in the winter when demand is high, but solar PV feed-in is low. Thus, wind power can contribute

more to covering the peak residual hour than solar PV.

Load profiles also differ to some extent, such that relatively lower loads in other countries in

combination with transmission can help to relieve the peak demand in a given country. During a peak

residual load hour in a given country, we show the load (not residual load) relative to its maximal

value in that year (Figure 2.4, Panel B). Most countries have to cover their own load and have limited

space to provide electricity for export. Most values range above 80%. Therefore, differences in load
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A Other countries’ capacity factors in 
peak residual load hours

B  Other countries’ relative load in

peak residual load hours

Notes: Panel A shows hourly capacity factors of all other countries in the peak residual load hour of the
country shown on the horizontal axis. Panel B shows the range of relative loads of all other countries in
the peak residual load hour of the country shown on the horizontal axis. The middle bar shows the median
value. The box shows the interquartile range (IQR), which are all values between the 1st and 3rd quartile. The
whiskers show the range of values beyond the IQR, with a maximum of 1,5 x IQR below the 1st quartile and
above the 3rd quartile. Both panels show results of the weather year 2016.

Figure 2.4: Illustration of main drivers: wind power, solar PV, and load

profiles provide a positive but limited flexibility potential related to (peak) residual load balancing

using interconnection.

Hydropower, a combined factor of hydro reservoirs, pumped-hydro, and run-of-river, has only a

limited influence on storage reduction through interconnection. It could, in general, be an important

provider of flexibility to the system. Yet, the reason for its limited importance is that installed hydro

capacities are not big enough to substantially reduce the need for storage power and energy capacity

(see Table A.3). This result may change under the assumption that hydropower capacity could

be extended far beyond current levels. Then, the factor hydropower could play a bigger role in

geographic balancing. This is also true for bioenergy, which we do not discuss here explicitly due to

its minor effect.

2.4 Discussion

2.4.1 Interconnection decreases storage needs

Identifying future electricity storage needs is highly relevant for planning deeply decarbonized, 100%

renewable power systems (T. Brown et al., 2018). Using an open-source numerical model, our

results show that optimal electricity storage capacity in an application to twelve central European

countries substantially decreases when interconnection between countries is allowed. Compared

to a setting without interconnection, short- and long-duration storage energy capacity decreases by

31%; storage discharging power, on average, declines by 25% and 33%, respectively. These values
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hold for an average of ten weather years, covering three decades of historical data. Our outcomes

corroborate and extend findings in the previous literature and show that the storage-mitigating effect

of geographical balancing also holds in a with 100% renewable energy. Yet, we go a step further by

also disentangling and quantifying how the mitigation of storage needs is driven by different factors.

To do so, we employ a factorization approach used, for instance, in climate modeling (Lunt et al.,

2021). To the best of our knowledge, this is the first time such an approach is adapted to a quantitative

power sector model analysis.

2.4.2 Wind power is the most important factor

We find that wind power is by far the most important factor in reducing optimal storage needs

through geographical balancing. Its heterogeneity between countries accounts, on average, for

around 80% of reductions in storage energy and discharging power capacity needs. The main

reason is that during peak residual load hours of a given country, which largely determine electricity

storage needs, wind power availability in neighboring countries is still relatively high. Accordingly,

geographical balancing helps to make better use of unevenly distributed wind generation potentials

in an interconnected system during such periods. Differences in the profiles of solar PV and load,

as well as in power plant portfolios (hydropower and bioenergy), contribute to the mitigation of

storage needs to a much smaller extent. Though our analysis focuses on central Europe, we expect

that qualitatively similar findings could also be derived for other non-island countries in temperate

climate zones where wind power plays an important role in the energy mix.

2.4.3 Conclusions on geographical balancing and modeling

Our analysis fosters the grasp of the benefits of geographical balancing and its drivers. The findings

may also be useful for energy system planners and policymakers. We reiterate the benefits of the

European interconnection and argue that strengthening it should stay an energy policy priority if a

potential shortage of long-duration electricity storage is a concern. Then, policymakers and system

planners may particularly focus on such interconnection projects that facilitate the integration of

wind power.

Finally, some modeling-related conclusions can be drawn. Any model analysis where wind

power plays a role should properly consider geographical balancing in case storage capacities are of

interest. Our analysis also indicates the importance of using more than one weather year in energy

modeling with high shares of variable renewables. Not least, we hope to inspire other researchers to

use factorization methods in energy modeling applications more widely.

2.4.4 Limitations

As with any numerical analysis, our investigation comes with some limitations. First, we may

underestimate storage needs due to averaging over specific weather years. In real-world systems,
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planners may pick only scenarios with the highest storage need to derive robust storage capacity

needs. Likewise, planners may also want to consider an extreme renewable energy drought for

storage dimensioning, i.e., a period with low wind and solar availability. In case such a renewable

energy drought similarly affects all countries of an interconnection, the storage-mitigating effects

may decrease. Second, we exclude demand-side flexibility options. In particular, we do not

consider future sector coupling technologies such as battery-electric vehicles or heat pumps, which

may induce substantial additional electricity demand but possibly also new flexibility options.

Temporally inflexible sector coupling options may substantially increase storage needs (Schill and

Zerrahn, 2020). Thus, we might overestimate the role of interconnection in mitigating storage. The

interaction of sector coupling with storage mitigation via geographical balancing appears to be a

promising area for future research. Third, optimization model results depend on input parameter

assumptions. In particular, we assume fixed interconnection capacities (Table A.4) and do not aim

to determine the optimal amount of interconnection capacity investments. For such an analysis, a

more detailed network model that considers optimal power flows over individual lines should be

used. Larger interconnection capacities than assumed here could increase the storage-mitigating

effect of interconnection as additional flexibility from other countries would become available. We

show average utilization rates of interconnections in Section A.5. Moreover, our analysis does

not differentiate between the “level” and “pattern” effects of wind and solar PV profiles. In our

counterfactual scenarios, we implicitly change both the patterns and the levels of wind and solar PV

availability. Further analysis could disentangle these two factors and quantify this relative importance

to better understand what exactly drives storage mitigation through wind and solar PV.
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3
Flexible heat pumps: must-have or
nice to have in a power sector with

renewables?

This chapter is based on A. Roth, D. Kirchem, et al. (2023). “Flexible Heat Pumps: Must-Have or

Nice to Have in a Power Sector with Renewables?” arXiv preprint arXiv:2307.12918 [econ.GN].

doi: 10.48550/arXiv.2307.12918
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3.1 Introduction1

In light of the climate crisis, heat pumps are regarded as a central technology to reduce GHG

emissions in the heating sector (IEA, 2022). When powered with electricity from RES, heat pumps

can displace traditional heating technologies such as oil- and gas-fired heating and thus mitigate GHG

emissions. In addition, the Russian invasion of Ukraine has led to a further political push in Europe,

but especially Germany, to reduce the dependence on Russian natural gas imports. In Germany,

natural gas is, at the moment, still the principal source of residential heating. The electrification of

heating can therefore be seen as a critical measure to reduce the use of natural gas.

In Germany, policymakers aim for an accelerated roll-out of decentralized heat pumps, with a

declared target of six million installed heat pumps by the year 2030 (A. Roth and Schill, 2023b).

Given the current stock of around 1.5 million heat pumps, such a transition implies an increase in

the electricity demand. So far, it is not yet understood how an increased heat pump stock affects

the power sector in detail, considering that the electricity needs for mobility, hydrogen production,

and other energy services will also increase. One common concern is that heat pumps constitute

an additional burden on the power sector if they are operated in an inflexible manner. Given that

electricity load profiles often coincide with heat demand profiles, inflexible heat pumps could add

to existing load peaks and thus increase the need for firm generation capacity or electricity storage.

Therefore, we explore the power sector effects of different German heat pump roll-out scenarios. In

particular, we focus on different degrees of temporal flexibility in heat pump operations by varying

the heat storage capacities assumed to be attached to heat pumps. To do so, we apply the open-source

capacity expansion model DIETER to the central European power sector for various scenarios of the

year 2030.

Previous studies have highlighted the important role of heat pumps in the decarbonization of

the heating sector. A recent study shows that deploying heat pumps is one of the fastest strategies

to reduce natural gas consumption in the German heating sector. Several studies investigate the

potential of heat pumps to facilitate the integration of RES in the power sector (Bernath, Deac, and

Sensfuß, 2019; Papaefthymiou, Hasche, and Nabe, 2012; Hedegaard and Münster, 2013; Ruhnau,

Hirth, and Praktiknjo, 2020; Chen et al., 2021). For example, analyses show that a roll-out of heat

pumps aligns well with additional investments into wind power deployment (Ruhnau, Hirth, and

Praktiknjo, 2020; Chen et al., 2021). With respect to the flexibility of heat pumps and optimal

heat storage size, the picture is inconclusive. Investigating heat storage sizes, a study finds that an

optimal heat storage capacity for Spain and the UK lies between 12 and 14 hours (Lizana et al.,

2023). An older analysis of wind power deployment in Denmark finds that the flexible operation

of heat pumps provides only moderate system benefits and that even inflexible heat pumps enable a

higher share of wind power energy (Hedegaard and Münster, 2013). A study for Germany points out

1Our colleague Adeline Guéret is thanked for supporting the calculations described in section 3.4.3, as well as various
colleagues of the Ariadne project for feedback on an earlier draft. Financial support from the German Federal Ministry of
Education and Research (BMBF) via the Kopernikus project Ariadne (FKZ 03SFK5N0) is gratefully acknowledged.
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that the power system cost savings from flexible electric heating with night storage in Germany is

moderate because renewable availability patterns do not align well with heat demand profiles (Schill

and Zerrahn, 2020). The seasonal demand pattern gives flexible electric heating a disadvantage

compared to other sector coupling options without this seasonality, such as electric vehicles. This

finding is also supported by another study (Kröger, Peper, and Rehtanz, 2023) that identifies a larger

potential for load shifting in electric vehicles than in heat pumps. Another study focuses on the role

of flexible, large-scale, centralized heat pumps in district heating grids (Bernath, Deac, and Sensfuß,

2019), finding a correlation between RES expansion and the choice of heating technologies. With

higher deployment of RES, large heat pumps become more competitive. Including other flexibility

options in the analysis might reduce the value of flexibility in the heating sector. Other studies

focus on the competition of the flexibility provided by heat pumps with electricity storage units.

In power systems with an 80 percent renewable share or higher, the flexible use of heat pumps

reduces the investment needs for short-term electricity storage significantly (Hilpert, 2020). The

substitutional nature between pumped hydro storage and thermal storage is also highlighted in the

literature (Ruhnau, Hirth, and Praktiknjo, 2020).

Our paper adds to the existing body of literature by investigating the power sector effects of

decentralized heat pumps in detail, specifically accounting for different levels of temporal flexibility

facilitated via heat storage. We do so with an open-source capacity expansion model that considers

the hourly variability of renewable generation as well as electricity and heat demand over a full year,

also accounting for additional loads related to electric vehicles and the production of green hydrogen.

To the best of our knowledge, such an analysis has not been done so far. We investigate how

different roll-out paths of heat pumps with different heat storage sizes impact the optimal capacity

investment and dispatch decisions in the power system. In contrast to prior studies, we also examine

how increases in natural gas prices impact the power system effects of an accelerated heat pump

roll-out. To check the robustness of our results, we carry out numerous sensitivity analyses with

alternative assumptions on relevant input parameters such as renewable availability, including an

extended drought period, natural gas prices, and a German coal phase-out.

3.2 Methods

Power sector model DIETER In this study, we use the power sector model DIETER (Dispatch

and Investment Evaluation Tool with Endogenous Renewables).2 It is an open-source linear program

to determine the least-cost investment and dispatch decisions for all electricity generation and storage

technologies. DIETER not only covers the traditional electricity sector but also includes a detailed

space heating module, e-mobility, and flexible hydrogen production options. The model minimizes

total system costs and considers all subsequent hours of a year to accurately capture renewable

energy variability and storage use. Input data for DIETER include time series of electric load, heat

2The model code can be accessed here: https://gitlab.com/diw-evu/projects/heatpumps_2030.
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demand, electric vehicle charging, hydrogen demand, and capacity factors of renewable energies.

Cost assumptions and technology investment constraints are further inputs.

Heat sector The space heating sector is included in Germany using twelve classes of residential

buildings categorized by two size classes (single-/two-family homes and multi-family buildings) and

six age classes, which correspond to varying energy efficiency levels (Schill and Zerrahn, 2020). We

exogenously specify the proportion of space heating, which is covered by two different types of heat

pumps for each scenario. Based on these inputs and assumptions, the model optimizes the hourly

use of electricity by heat pumps. We assume that heat pumps can be combined with buffer thermal

energy storage of different sizes, which we vary between scenarios.

Figure 3.1 depicts how heat pumps are modeled in DIETER. The heating energy generated by a

heat pump is determined by its coefficient of performance (COP) and the amount of environmental

heat available. How much heating energy is provided to the building depends on the heat outflow

from the buffer storage, which cannot exceed the total amount of heating energy stored plus the

storage inflow in the same hour. Finally, the heat storage outflow feeds both the space heating

demand and the hot water demand. We only consider decentralized heat pumps with decentralized

thermal energy storage. Centralized large heat pumps supplying district heating grids and centralized

seasonal heat storage are not considered.
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Electricity
generation

Hourly space heating balance:
heat storage outflow = space heating

demand

Hourly hot water balance:
heat storage outflow = hot water

demand

Heat conversion: environmental heat x COP = heat
storage inflow

Storage level 1:
heat storage level =

standing loss factor x heat storage level of previous hour
 + heat storage inflow

- sum of heat storage outflows

Storage level 2:
heat storage level of first hour =
heat storage level of final hour

Maximum storage level:
heat storage level <= installed heat storage energy

Heat demand time
series are defined for:

- Germany
- 12 residential   
  building types
- 8760 hours

Environmental
heat

Electricity

Heat pump

Maximum electricity demand:
electricity demand <= installed power capacity

Buffer
storage

Heat

Heat

Heat

Figure 3.1: Heat module in DIETER

Sector coupling As the electrification of other sectors is a policy target in Germany, we also

account for electric mobility and green hydrogen. The additional system load of electric vehicles

enters the model as an electricity demand time series. Cars are assumed to charge with a balanced,

yet not wholesale market price-driven time profile determined by the open-source tool “emobpy“

(Gaete-Morales, Kramer, et al., 2021) (for further details, see B.1.1). The model also has to satisfy a

given yearly demand for green hydrogen via electrolysis. The hourly hydrogen production profile is

endogenously optimized, with given electrolysis capacity and assuming hydrogen storage at no cost.

We provide the equations that describe the simple hydrogen model in B.1.2.
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Geographical scope We conduct the study focused on Germany and its neighboring countries,

including Denmark, Poland, Czechia, Austria, Switzerland, France, Luxembourg, Belgium, the

Netherlands, and Italy. To keep the model tractable while still taking into account the effects of

the European interconnection, we optimize investment decisions only for Germany while assuming

fixed power plant fleets for other countries, and also do not model sector coupling explicitly for other

countries than Germany.

3.3 Data and scenario assumptions

3.3.1 Input data sources

Time series data for the electric load in Germany and renewable energy availability profiles for all

countries are taken from the “Open Power System Data” platform, using the weather year 2016 for

renewables and the year 2019 for load (Wiese et al., 2019). German load time series are scaled to the

expected yearly electricity load in 2030 according to the medium scenario (B) of the German Grid

Development Plan NEP 2019 (Bundesnetzagentur, 2018). Load data for other countries is derived

from the TYNDP 2020 (ENTSO-E, 2018b), based on the scenario “Distributed Energy” and the

climate year 1984. Cost and technology parameters of electricity generation and storage technologies

are depicted in Table B.3 in the Supplemental Information. We assume that electrolysis happens at

a conversion factor of 71 percent; hence 1 Kilowatt hour (kWh) of electricity is transformed into

0.71 kWh of hydrogen. The relevant technical assumptions related to heating technologies as well

as gas-based electricity generation technologies for the ex-post analysis of natural gas savings are

shown in Table 3.1. The estimation of natural gas and emission savings due to heat pumps is based

on this data (more information in Section 3.4.3).
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Table 3.1: Relevant parameters for comparison of gas savings due to heat pumps

Parameter Value

Overnight investment costs [EUR/kWth]

Air-sourced heat pumps 850

Ground-sourced heat pumps 1400

Gas boilers 296

Efficiencies

Open-cycle gas turbine 0.4

Combined-cycle gas turbine 0.542

Gas boilers 0.9

Technical lifetime of heat pumps [Years] 20

Interest rate 0.04

Annuity factor 0.074

Emission factor [t CO2-eq /MWhth] 0.2

3.3.2 Scenario assumptions

We refer to our main set of scenario assumptions as “baseline”. In the following, we briefly sketch

the most important features of this scenario. Whenever we deviate from the baseline, for example,

when we present sensitivity analyses, we make this explicitly clear.

Heating sector We distinguish between four scenarios of the overall heat pump stock in the year

2030. In the reference roll-out, we assume 1.7 million decentralized heat pumps in 2030, based on

the assumption that the historic shares of heat pumps in different building types remain constant,

based on (Schill and Zerrahn, 2020). In the slow roll-out, the number of heat pumps reaches 3.9

million by 2030. Here, the additional heat pumps are installed exclusively in single- and two-family

homes of the two highest energy efficiency categories. In the mid roll-out, 6.5 million heat pumps

are installed by 2030. Unlike the previous scenario, single- and two-family homes from the next

worst energy efficiency class are also fitted with heat pumps. In the fast roll-out, heat pumps are

additionally installed in multi-family homes of the same energy efficiency classes, which increases

their total number to 7.5 million by 2030. Table 3.2 provides an overview of the heat pump roll-outs.

In the most ambitious scenario, decentralized heat pumps provide nearly a quarter of total space

heating and domestic hot water needs (Table 3.2).

Across all building types, air-source heat pumps account for 75% of installed heat pumps across

all building classes, with ground-source heat pumps accounting for the remaining 25%. While

ground-source heat pumps are more energy-efficient, air-source heat pumps are cheaper to install.

We assume that all heat pumps are combined with thermal energy storage. We conduct analyses with

varying thermal storage capacities ranging from 0 to 168 hours (0, 2, 6, 24, and 168 hours). For
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instance, a heat storage of two hours could deliver the maximum heat output for two consecutive

hours.

Table 3.2: Heat pump data

Reference Slow Mid Fast

Number of installed heat pumps [million] 1.7 3.9 6.5 7.5

Heat pump power rating [GWe] 8.5 17.4 28.9 40.1

Heat pump thermal rating [GWth] 19.6 40.1 66.6 92.6

Share of air-sourced heat pumps 0.75 0.75 0.75 0.75

Share of ground-sourced heat pumps 0.25 0.25 0.25 0.25

Heat supplied by heat pumps [TWhth] 24.7 45.9 103.1 142.6

Note: Heat includes space heating and domestic hot water.

We model 12 different building archetypes, which we distinguish by year of construction (six

classes: before 1957, four periods between 1958 and 2019, and after 2019) and housing type (two

classes: one -& two-family homes and multi-family homes). Depending on the year of construction,

the building archetypes are characterized by different energy efficiency levels: younger buildings

have a lower annual heating requirement, and buildings constructed after 2020 are characterized as

passive houses. Table B.1 illustrates the building stock assumptions for 2030, which are based on

(Schill and Zerrahn, 2020).

Generation capacity bounds In accordance with the 2030 German Grid Development Plan (NEP

2030) (Bundesnetzagentur, 2018), we assume that fossil-fuel power plant capacity expansion in

Germany is limited. In sensitivity analyses with a German coal phase-out, we assume the upper

capacity limit for hard coal and lignite to be zero. Regarding RES, we fix capacities of run-of-river

hydropower and bioenergy under the assumption that their potential for further capacity expansion is

exhausted. Furthermore, we align upper capacity bounds for on- and offshore wind energy with

the current German government targets of 115 GW for onshore wind and 30 GW for offshore

wind in the baseline scenarios. In the sensitivity analysis, we remove these limits. Capacities for

other countries are fixed based on the Ten-Year Network Development Plan (TYNDP) (ENTSO-E,

2018b) of the European Transmission System Operators. Electrolysis capacity is fixed at 10 GWe.

Table B.2 provides an overview of the lower and upper capacity extension limits in Germany and

fixed capacities in other countries.

Sector coupling demand In Germany, we take into account electric loads related to sector

coupling. To incorporate the impact of e-mobility, we include a fleet of 12.5 million electric cars,

which require approximately 29 TWh of electricity annually. Additionally, we account for 28 TWh

of hydrogen demand in Germany, which must be generated by domestic electrolysis. This results
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in an additional electricity demand of around 39 TWh. The assumption is based on the target set

in the German National Hydrogen Strategy 2020 to build up an electrolysis capacity of six GW,

and scaled by the new target of 10 GW declared in 2022. Due to the assumed free hydrogen

storage, electrolyzers can operate with some degree of flexibility to produce the above-mentioned

total amount of hydrogen over the course of the year. In countries other than Germany, additional

loads related to sector coupling are included in the electric load time series data provided by ENTSO-

E.

Renewable energy constraint In all scenarios, 80 percent of the yearly electricity consumption in

Germany, including electric vehicles and electrolysis, has to be covered by RES. That is in line with

the goal of the current German government coalition. In addition, the electricity demand by heat

pumps has to be entirely met by additional RES over the course of a year (but not every single hour).

That means that the entire yearly electricity demand of heat pumps has to be generated by RES, not

necessarily that RES in Germany can supply enough electricity for heat pumps every hour. In other

countries, we do not assume any renewable energy targets.

Fuel and carbon prices For fuel prices, see table B.3. We further assume a carbon emission cost

of 130 Euro per ton of CO2 for 2030 (R. Pietzcker et al., 2021). This cost is associated with the

emission factor of fossil-based heating and electricity generation technologies and is considered a

variable generating cost, along with fuel expenses.

3.4 Results

3.4.1 Results for baseline assumptions

The baseline scenario includes expansion limits of 115 GW for onshore wind power and 30 GW for

offshore wind power, has no regulated phase-out of coal-fired power plants, and assumes a natural

gas price of 50 Euro per MWh. We show the effects of alternative assumptions in the subsequent

section 3.4.2.

3.4.1.1 Heat storage reduces electricity generation and storage capacity investments

Expanding the stock of heat pumps requires additional investments into electricity generation

infrastructure. We first look at the case of temporally inflexible heat pumps, i.e., heat pumps with

no attached heat storage. These have to consume electricity exactly at the time of heat demand

(left rows in Figure 3.2). In the reference roll-out scenario, the stock of heat pumps only increases

slightly above the level of 2022. In this reference scenario and under baseline assumptions, the

German electricity sector requires renewable power plant capacities of 111 GW onshore wind,

30 GW offshore wind, and 153 GW of solar PV (3.2, Panel A) to reach the goal of 80% renewable

energy. Further, 10 GW of hard coal and 21 GW of gas-fired power plants are installed.
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Figure 3.2: Optimal capacity investments under baseline assumptions

An increasing roll-out of heat pumps requires higher generation capacity additions. In the

scenario fast with the highest roll-out of around 7.5 million heat pumps (Panel D), there is a need

for an additional 48 GW of solar PV capacity to generate the electricity the heat pumps need over

the year. This capacity expansion is driven by the fact that the additional electricity demand by heat

pumps has to be covered 100% by renewable energy. At the same time, wind power capacity can

hardly be expanded because of the assumed expansion limit of 115 GW.

The effects of heat pumps on firm electricity generation and storage capacities are smaller,

with eight GW of additional gas power plants (close and open cycle together) and nine GW of

battery storage in terms of power rating (Panel D) as well as 87 acGWh energy capacity (Panel

H). This aligns well with the expansion of solar PV and respective increases in diurnal fluctuations

of electricity generation. The growth in batteries, in turn, is crowding out power-to-gas-to-power

storage, which is substituted completely in the fast scenario.

In the scenarios slow and mid (Panel B & C), in which fewer additional heat pumps are installed,

results are qualitatively similar but require overall lower capacity additions. For instance, scenario

slow requires 3.5 GW of solar PV and 3.7 GW of onshore wind, and hardly any additional power

plant capacities (Panel B).

Equipping heat pumps with heat storage reduces the need for electricity generation and storage

capacities. With a heat storage capacity of two hours of maximum heat pump output, there is hardly
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an effect on the optimal installed solar PV capacity (Panel D, second column), but it reduces the need

for battery storage: the additional power rating of battery storage is reduced by seven GW (two GW

instead of nine GW, Panel D). This is because short-duration electricity and heat storage serve as

complements, especially when it comes to taking up daily solar PV surplus generation peaks. If

the heat storage capacity becomes larger than two hours, this further decreases the capacity needs

for solar PV as well as open-cycle gas turbines (OCGT), which are used to supply peak residual

loads. As heat storage helps balancing the fluctuations of solar generation, heat demand profiles, and

the overall system load, other additional peak supply capacities are not needed. Increasing the heat

storage capacity beyond two hours requires even fewer additional fixed power plant capacities (such

as gas power plants). Yet, the overall effects remain moderate even if heat storage becomes very

large (168 hours, i.e., one week).

The effects of additional heat storage on optimal battery storage energy capacities (lower row of

panels Figure 3.2) are even more pronounced. Compared to the fully inflexible 0-hour heat storage

scenario, the additionally needed battery storage energy capacity is 39 GWh lower with two hours of

heat storage (48 GWh instead of 87 GWh, Panel H). Heat storage of six hours makes heat pumps so

flexible that they can be rolled out almost without any complementary battery storage. While in the

case without heat storage, a maximum of 87 GWh of additional battery storage is installed (scenario

“fast”), this need is diminished to 14 GWh by a six hour heat storage. Larger heat storage conversely

causes optimal battery storage energy capacity to increase again slightly, but this is compensated by

lower long-duration electricity storage needs (power-to-gas-to-power). For any roll-out path, we see

that less long-duration electricity storage is needed when more heat pumps are rolled out. That is

because batteries and heat storage replace long-duration electricity storage. Note that in all of these

scenarios, pumped-hydro storage capacities in Germany are assumed to be fixed.

3.4.1.2 Heat storage helps to integrate renewable electricity

The impact of an increased heat pump roll-out on the optimal yearly dispatch of generation and

storage capacities is largely in line with its impact on optimal capacities (Figure 3.3). Yet, the

share of onshore wind power in additional electricity generated is larger than its share in additional

capacity, as it comes with higher full-load hours than PV. As the time profiles of solar PV and heat

pump load only align to some extent, the expansion of heat pumps triggers additional generation

by gas-fired power plants and increased battery storage use. Similar to optimal investment, larger

heat storage capacities decrease the use of batteries. Beyond a six-hour heat storage capacity, battery

storage use increases again, in line with slightly increasing generation from solar PV. Net imports of

electricity slightly decrease with the roll-out of heat pumps, especially when they do not come with

heat storage, i.e., are operated in an inflexible manner. As renewable generation capacity expansion

that goes along with the heat pump roll-out causes increasing renewable surplus generation events,

especially solar PV peaks at noon, these surpluses are partly exported, especially in case of inflexible

heat pump operation. Accordingly, net imports decrease.
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Figure 3.3: Yearly electricity generation by source under baseline assumptions

Figure 3.4 provides an illustration of hourly electricity generation and heat pump operation in

combination with additional heat pumps. The figure depicts two exemplary weeks in the baseline

scenario, with a fast roll-out and two hours of heat storage. The diurnal fluctuations of solar PV

generation are visible. In contrast, wind power generation has less regular, yet longer variability

patterns. In hours of low wind and solar PV generation, gas-fired power plants and imports cover the

remaining residual load. Even with only two hours of heat storage capacity, heat pumps can align a

substantial part of their electricity consumption with PV peak generation periods. This indicates that

even small heat storage capacities already improve the integration of heat pumps into the system.

Hours of electricity exports, storage charging, and heat pump use often coincide, which are also

hours with relatively low prices. Conversely, heat pumps largely avoid drawing electricity from

the grid during hours when imports take place, which often coincides with hours of low renewable

generation and relatively high prices.

Given our model setup, heat pumps are operated in a way to minimize system cost, which can

be interpreted as if they are following (wholesale) market price signals. Heat pumps can align their

electricity consumption better with periods of low residual load (which goes along with low prices)

when they are equipped with heat storage. As visible in Figure 3.5, there is a strong alignment

of heat pump electricity intake and relatively low residual load levels. While heat pumps with no

heat storage are inflexible electricity consumers, even small two-hour thermal storage makes them
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Figure 3.4: Hourly electricity generation and heat pump operation in two exemplary weeks

sufficiently flexible that they can adjust their demand to the overall system to a considerable extent.

If heat storage is expanded further (rows “6” and “168” of Figure 3.5), heat output and electricity

intake are even less correlated. However, as shown before, the effects on optimal storage capacity

installation are comparatively small beyond six hours of heat storage (Figure 3.2).
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Figure 3.5: Heat pump operation compared to the residual load with different heat storage durations

3.4.1.3 Electricity sector costs

With respect to electricity sector costs, our analysis focuses on additional system costs caused by the

heat pump expansion. We relate these costs to the additional heating energy provided (Figure 3.6).

More heat pumps lead to additional costs for the electricity sector. We find a cost increase of around

four ct/kWh of additional heating energy provided in the fast roll-out scenario with two hours of heat

storage. That is because the expansion of heat pumps triggers additional investments into electricity

generation and storage infrastructure. This increase in electricity sector costs is much lower than

average consumer prices for natural gas in Germany.

Electricity sector costs decrease with larger heat storage. This decrease is very small between a

day (24 hours) and a week of heat storage (168 hours), hinting at the fact that heat storage is primarily

used to balance daily fluctuations. That is, the marginal electricity sector cost savings decrease with

larger heat storage. The power sector cost effect is largest when the heat storage capacity is increased

from zero hours to two hours.

Figure 3.6 does not include the installation costs of heat pumps and heat storage, but only the

costs related to the electricity sector, such as investment and operational costs of generation and

electricity storage capacities. Therefore, we can interpret these figures as opportunity costs of heat

storage. Taking the fast roll-out path as an example, an introduction of heat storage of six hours
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Figure 3.6: Additional electricity sector costs per MWh of additional heating energy provided for
different roll-out scenarios and heat storage durations

comes with a reduction of around 10 Euro per MWhth of the additional heat provided. This is a

benchmark of how cheap heat storage would have to become in order to lower overall system costs.

3.4.2 Sensitivity analyses

In addition to our baseline scenario runs in which we vary the roll-out speed of heat pumps and heat

storage durations (see sections above), we conduct several sensitivity analyses. Those help us judge

how strongly our results hinge on certain fundamental model assumptions. Table 3.3 provides an

overview of all sensitivity analyses conducted.

Table 3.3: Overview of sensitivity analyses

Name Description

1 no wind cap No upper capacity on capacity on- and offshore wind investment
in Germany.

2 gas100 Natural gas price set to 100 Euro per MWh.
3 gas150 Natural gas price set to 150 Euro per MWh.
4 coal phase-out No coal-fired plants allowed to operate by 2030.
5 coal phase-out + gas100 Combination of 2 and 4.
6 coal phase-out + gas150 Combination of 3 and 4.
7 RE drought All renewable energy capacity factors in one winter week are set

to zero.
8 RE drought + coal

phase-out
Combination of 4 and 7.

In the following, we briefly present the different sensitivity analyses and discuss their results

in terms of capacity investments (Figure 3.7), dispatch (Figure 3.8), and additional system costs of

heating provided (Figure 3.9).
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Figure 3.9: Additional power system costs of heating energy provided (space heating and domestic hot
water) in different sensitivity analyses

No capacity expansion limit of wind energy (no wind cap) In the baseline scenarios, we set

an upper limit for on- and offshore wind power capacity expansion in Germany of 115 GW and

30 GW, respectively. This appears to be more policy relevant in a 2030 perspective as compared to

assuming unbounded wind power expansion potentials, considering real-world constraints related to

regulation, land availability and public acceptance. In a sensitivity analysis, we drop this upper limit

so that investments into on- and offshore wind power are unconstrained.

The removal of the upper cap for wind power leads to higher overall wind capacities and lower

PV capacity expansion, even in the reference roll-out scenario (Figure 3.7, Panel A). This in turn

reduces overall capacity requirements. Investments into onshore wind energy even decrease slightly,

but are overcompensated by additional offshore wind capacities. These changes correspond with

a higher yearly generation of offshore wind energy in the reference roll-out scenario (Figure 3.8,

Panel A) compared to the baseline scenario. Given this reference, an additional roll-out of heat

pumps leads to a substantial expansion of wind onshore and particularly offshore capacities, yet far

fewer additional PV capacities (Figure 3.7, Panel B) than in the baseline. In consequence, additional

dispatch consists mainly of offshore wind energy instead of solar PV (Figure 3.8, Panel B). The

increased use of wind power hints to the fact that its availability aligns better with the seasonality of

the heating demand than solar PV. Optimal storage energy installation rarely changes in comparison

to the baseline (Figure 3.7, Panel C and D). Despite the relatively large shift between wind power and

PV, overall system costs barely change compared to the baseline setting (Figure 3.9). This implies

that a roll-out of heat pumps can also be combined with solar PV capacity expansion in case of
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binding wind power capacity limits with little additional costs, making use of the flexibility provided

by the European interconnection.

Sustained high gas prices (gas100 and gas150) As a consequence of the Russian invasion of

Ukraine, the natural gas supply structure of Europe was fundamentally changed. For the foreseeable

future, Germany will not import any more Russian gas, but will rely on more costly imports of

liquefied natural gas (LNG) from other regions. Although wholesale gas prices have been falling

strongly since their peak levels of over 300 Euro per MWh in August 2022 and range by the time of

writing at around 30 Euro per MWh, it remains possible that new spikes arise in the near future. In

our set of baseline scenarios, we assume a natural gas price of 50 Euro per MWh. We introduce two

alternative scenarios, gas100 and gas150, in which we assume natural natural gas prices of 100 or

150 Euro per MWh.

Higher gas prices barely alter the optimal capacity expansion in the reference roll-out. Even a

fast heat pump roll-out leads to very similar capacity installations compared to baseline assumptions,

with slightly increased solar PV (for a gas price of 150 Euro per MWh) and even slightly more

additional gas power plants. This is because with a reference roll-out, the capacity of gas-fired

power plants is higher under baseline assumptions (Figure 3.7, Panel A) than in the sensitivities with

higher gas prices, where nearly no gas-fired power plants are built. Thus, additional heat pumps have

a slightly larger effect in these scenarios. Regarding yearly energy generation, the higher gas prices

drive out natural gas in the reference roll-out and lead to slightly less additional dispatch by gas

power plants in the fast roll-out scenario. Overall, we do not observe substantial changes compared

to our baseline scenario. Nonetheless, the additional power system costs per heating unit increase

substantially compared to the baseline because of more expensive natural gas.

Coal phase-out (coal phase-out) In the baseline scenarios, we allow coal-fired power plants to

generate electricity in 2030, in accordance with the currently planned German coal phase-out by

2038. However, the current governmental coalition agreed to “ideally bring forward” the coal phase-

out to 2030. Although this agreement has not yet been translated into binding law, we aim to analyze

the power sector consequences of an earlier coal phase-out combined with a faster heat pump roll-

out. Hence, in this sensitivity analysis, we assume that electricity generation by coal-fired power

plants is not possible.

In the reference roll-out, coal-fired power plants that are present in the baseline scenario would

be mainly replaced by gas-fired generation. For a fast roll-out of heat pumps, the additional capacity

needs hardly differ from those in the baseline, as heat pumps also do not trigger an expansion of

coal-fired power plant capacities under baseline assumptions. In terms of dispatch, generation by

coal-fired power plants in the reference roll-out scenario is mainly compensated by gas-fired (CCGT)

plants, as well as by increased net imports. Expanding heat pumps leads to largely similar dispatch

effects as in the baseline. Power system costs increase only very slightly.
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We also combine the coal phase-out with higher gas prices (scenarios coal phase-out + gas100

and coal phase-out + gas150). In consequence, we see slightly higher solar PV capacity installations

in the reference roll-out. Additional capacities in the fast roll-out barely differ from those under

baseline assumptions. In terms of dispatch, results do not differ too much from the baseline either.

For the reference roll-out, the missing coal-fired generation is partly displaced by electricity net

imports. Yet, these net imports diminish with additional heat pumps in the fast roll-out. Overall,

additional dispatch does not vary strongly between these sensitivity scenarios and the baseline. Yet,

the combination of a coal phase-out and higher gas prices lead to considerably higher power system

costs because of higher production costs of gas-fired power plants, which often are the marginal

plant.

A week of a renewable energy drought (RE drought) As the share of variable renewable energy

increases, the security of supply during prolonged periods with low renewable energy supply

becomes an increasing concern. Therefore, we assess how a week of a severe renewable energy

drought in Europe would affect our results. To simulate an extreme case of such a week, we

artificially set wind and solar PV capacity factors to zero in all modeled countries during one winter

week.

Because of this massive input parameter modification, this sensitivity analysis substantially

impacts our results. Effects on generation capacities are generally limited for the reference roll-

out, yet substantial long-duration storage capacities (power-to-gas-to-power) are needed. In contrast

to the baseline, where almost no long-duration storage is installed, 2.6 TWh of energy capacity are

installed in the RE drought scenario already in the reference roll-out of heat pumps. In the fast

roll-out scenario, another 2.6 TWh are added, a substantial difference from the baseline, in which

long-duration energy storage capacity remains unaltered in the fast roll-out. Also, the fast roll-out of

heat pumps triggers significantly higher solar PV capacity additions: over 58 GW instead of 48 GW

in the baseline. In terms of dispatch, the fast roll-out of heat pumps leads to a higher use of solar PV

generation and short-duration electricity storage compared to the baseline. Considering the binding

minimum renewable energy share constraint, the addition of PV capacity is required to compensate

for the missing generation from renewables (largely wind power) during the drought week. As

wind power capacities are capped, additional solar PV capacities are installed, which in turn trigger

additional short-duration storage capacities to integrate optimally the electricity generated by solar

PV. Including a renewable energy drought accordingly also leads to higher system cost increases of

a fast heat pump roll-out of 6.1 cent per kWh heat provided. This can be explained by additional

capacity investments needed as well as the dispatch of gas-fired power plants in the week of energy

drought.

Combining the scenarios RE drought with coal phase-out, we find very similar capacity

expansion results. The biggest difference is, however, that already in the reference roll-out scneario

9.7 TWh of long-duration electricity storage are installed. This is because coal-fired power plants are
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missing as a firm generation technology, and also the generation capacities of gas-fired power plants

cannot be increased further. In the fast roll-out of heat pumps, generation capacities are similar

to RE drought, yet even more additional long-duration electricity storage is installed: an additional

3.6 TWh instead of 2.6 TWh for the RE drought only and almost zero in the baseline. Dispatch in the

scenario RE drought + coal phase-out does not greatly change from RE drought, and power system

costs only increase mildly.

For baseline, RE drought, and RE drought + coal phase-out, we ran additional sensitivity

analyses assuming zero heat storage instead of heat storage with an energy-to-power ratio of two

in all the other scenarios. Generation capacity changes are very limited and differ barely from the

respective scenario with an E/P of two. We see slightly higher capacity investments into solar PV, as

well as short- and long-duration storage. Concerning yearly electricity generation, we find that the

absence of heat storage leads to a more intensive use of short-duration electricity storage. This can

already be detected in the fast roll-out of heat pumps in the baseline scenario, and the use is further

increased in the scenarios RE drought and RE drought + coal phase-out. The overall impact on costs

remains limited. That is, small-scale heat storage reduces overall system costs in all sensitivities

investigated here, but mildly so.

Summarizing the results of our extensive sensitivity analyses shows that the principal results and

insights remain largely robust. Adding a considerable number of heat pumps to the German power

sector leads to substantial capacity investments into mainly solar PV to fulfill the renewable energy

constraint. Additional investments into gas-fired power plant capacities and short-duration lithium-

ion storage capacities are also optimal. If the expansion of heat pumps could be accompanied by

unlimited wind power expansion, this would lead to favorable results compared to a setting where the

additional energy is largely supplied by solar PV. Yet, overall costs decrease only to a small extent

when relying more on wind power. Overall, sensitivity scenarios point to the fact that, especially

when a renewable energy drought is present, firm generation and storage capacities are most strongly

expanded compared to the baseline.

3.4.3 Natural gas and carbon emission savings

Based on the power sector optimization results, we can also examine the effects on natural gas usage

and carbon emissions of an accelerated roll-out of heat pumps. In doing so, we compare the reference

roll-out of 1.7 million heat pumps with 2.2 million additional heat pumps in the slow roll-out scenario

and 5.8 million additional heat pumps in the fast roll-out scenario. The underlying assumptions for

the calculation of gas and emission savings are stated in Table 3.1. Table 3.4 summarizes the results.

Under the assumption that each heat pump replaces one gas boiler with a thermal efficiency

of 0.93, additional heat pumps displace around 24 TWhth of natural gas in case of a slow roll-out

and around 131 TWhth with a fast roll-out. At the same time, natural gas usage for electricity

generation increases in both scenarios, but this is by far overcompensated by the large natural gas

3A thermal efficiency of 0.9 means that 1 kWh of natural gas will be transformed to 0.9 kWh of heat.

52



3.4 Results

savings in the heating sector, leading to total savings of up to 117 TWhth of natural gas (fast roll-

out). In the scenarios with gas prices of 100 Euro or 150 Euro per MWhth, gas usage for electricity

generation drops compared to the scenario with a price of 50 Euro. That leads to slightly larger total

yearly natural gas savings of up to 122 TWhth. To put these numbers into perspective, 120 TWh

of natural gas correspond to around 14 percent of Germany’s overall natural gas consumption in

2022, or around a third of private and commercial natural gas demand, or to around 100 shipments

of large LNG tankers. In general, we find that all scenarios lead to a substantial reduction in natural

gas consumption, which is mainly driven by the substitution of gas boilers with heat pumps. The

additional natural gas consumption in the electricity sector has a minor effect. Note that this is also a

consequence of our renewable energy constraint which requires that the roll-out of heat pumps goes

along with a corresponding expansion of yearly renewable electricity generation.

We also observe a general decrease in overall costs in all scenarios. Here, overall costs include

the increase in power system costs due to higher electricity demand, the total annualized overnight

investment costs of the additional heat pumps against the savings in natural gas expenditures, CO2

emission costs, as well as investment costs of replaced natural gas boilers. Overall cost savings are

2.3 billion Euro per year in the fast toll-out scenario and a 50 Euro per MWh gas price; assuming a

higher gas price of 150 Euro per MWhth, cost savings increase to nearly 14 billion Euro per year.

The reduced consumption of natural gas leads to lower CO2 emissions. In a fast roll-out scenario

of heat pumps, CO2 emission savings of 23-24 million tons CO2-eq can be expected under different

gas price assumptions, strongly exceeding the emission savings of around four million tons CO2-eq

in the slow roll-out. 24 million tons of CO2 correspond to around three percent of Germany’s overall

CO2 emissions of the year 2021, or around a third of the CO2 emissions of German households in

the building sector. Hence, an ambitious heat pump roll-out as described in this paper could make a

sizeable contribution to Germany’s strategy to reduce emissions. A further expansion of heat pumps

beyond 2030 would lead to even higher reductions of carbon emissions.

Table 3.4: Yearly saving of natural gas, CO2 emissions, and costs related to heat pumps (Changes and
savings in relation to reference scenario)

Gas price EUR/MWh 50 100 150

Heat pump roll-out slow fast slow fast slow fast

Natural gas displaced by additional heat

pumps

TWhth -23.5 -131.0 -23.5 -131.0 -23.5 -131.0

Additional electricity generated from

natural gas

TWh 38.5 44.4 0.9 5.1 0.4 5.6

Additional gas usage for electricity TWhth +2.9 +14.0 +0.7 +8.9 +0.6 +10.2

Total change in gas usage TWhth -20.6 -117.0 -22.8 -122.0 -22.9 -120.7
Total change in emissions Mio t CO2-eq -4.1 -23.4 -4.6 -24.4 -4.6 -24.1
Change in overall costs billion EUR -0.1 -2.3 -1.1 -8.0 -2.2 -13.7
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3.5 Discussion and conclusion

As heat pumps are considered a key technology in the heating transition, their potential future

impact on the electricity sector is of interest. We determine the impacts of different roll-out paths

of decentralized heat pumps in Germany, combined with thermal buffer storage of different sizes,

on the central European power sector. We find that the addition of nearly six million heat pumps in

Germany would require additional investments of around 48 GW of solar PV capacity, regardless

of the assumed size of the attached heat storage. These results are partly driven by the assumption

that the additional electricity consumption of heat pumps has to be covered by additional renewable

electricity on a yearly basis and that the expansion of wind power is limited to 115 GW (offshore)

and 30 GW (offshore), respectively. Our results suggest that the need for additional firm capacities

remains limited, such as gas-fired power plants and lithium-ion batteries, which can provide flexible

generation in times of low renewable energy generation. This is true even if heat pumps are operated

in an inflexible way, as heat pumps benefit from the European interconnection.

The need to expand electricity storage capacities can be reduced by coupling decentralized heat

pumps with thermal storage. Already small buffer heat storage of two hours enables heat pumps to

align electricity consumption with the residual load to a sizable extent. This results in substantial

power system cost savings compared to a system with inflexible heat pumps. We find the largest

mitigation of electricity storage needs in a setting with a heat storage capacity of six hours. To sum

up, operating heat pumps in a temporally flexible manner cannot be considered to be a “must-have”

in the power sector modeled here, but it appears to be desirable.

Sensitivity analyses show that results are generally robust against changes in key scenario

assumptions. Assuming unconstrained expansion potentials for wind power substantially reduces

solar PV capacity deployment, but not overall costs, since wind energy aligns better with heat

demand (compare Ruhnau, Hirth, and Praktiknjo, 2020). A complete coal phase-out in the electricity

sector does not have major effects, but requires additional dispatchable generation capacity from

natural gas to satisfy load peaks. A further increase in gas prices changes these results only slightly

but increases power system costs substantially. Considering a week-long, pan-European renewable

energy drought requires that the expansion of heat pumps is accompanied by a substantial expansion

in long-duration electricity storage capacity to satisfy the additional electricity demand of heat

pumps.

We further find that an accelerated replacement of gas boilers with heat pumps (fast roll-out

scenario) can bring about yearly natural gas savings of up to 122 TWhth, already accounting for

increased gas usage in the electricity sector. This corresponds to around a third of private and

commercial natural gas demand in Germany and corroborates related findings by Altermatt et al.

(2023). Overall yearly cost savings depend, among other factors, on the natural gas price and

range between around two and 14 billion for different natural gas price assumptions. CO2 emissions

decrease by 23-24 million tons per year.
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As with any model-based analysis, our study has limitations. For example, we implicitly assume

perfect distribution and transmission grids within countries, which limits our analysis with respect

to any kind of grid congestion caused by heat pumps. In some distribution grid settings, the effect

of heat pumps on grid congestion may be more severe than the impacts on system-wide generation

capacities and dispatch modeled here. Furthermore, the size of the heat buffer storage is exogenously

varied and not an endogenous investment decision in the model. That means that we cannot draw

conclusions regarding the optimal heat storage capacity from this analysis. Yet, our results show that

even relatively small heat storage capacities may already have substantially positive power system

effects. Further, flexibly operating heat pumps requires incentives for consumers in the real world.

Finding ways of exposing heat pump operators to wholesale market price signals, either directly

or indirectly via aggregators, appears to be important in this respect. Next, our analysis could be

expanded by allowing for optimal generation capacity expansion in other European countries in order

to assess the potential interactions of capacity expansion in Germany and abroad. This has been left

out in this analysis for numerical reasons and to improve tractability. Furthermore, Germany is not

the only country pushing for an accelerated roll-out of heat pumps. Future analysis could include

similar developments in other European countries to obtain more comprehensive insights into a wider

European heating transition.

In summary, we find the power sector impacts of an accelerated heat pump roll-out in Germany to

be moderate and manageable, even under the assumption that the electric load from heat pumps is met

by a corresponding expansion of renewable electricity generation in a yearly balance. If wind energy

cannot be expanded beyond certain limits, additional solar PV capacity can be deployed instead

without substantially increasing the overall system costs. This is despite a seasonal mismatch of solar

PV generation and heat demand profiles, which can be mitigated via the European interconnection.

In general, operating heat pumps in a temporally flexible manner entails power sector benefits. Even

relatively small heat storage already facilitates lower electricity storage needs and power system

costs. Yet, such flexible operations do not appear to be a “must-have” in the scenarios modeled here.

Overall, the need to add firm generation and storage capacities still remains limited, even in a less

optimistic setting if heat pumps are operated as fully inflexible loads.
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4. Power sector impacts of a simultaneous European heat pump rollout

4.1 Introduction

To limit the increase of global mean temperature and mitigate its consequences, European countries

have decided to decrease their GHG emissions in the coming decades, achieving a net-zero economy

in 2050 (European Climate Law, 2021). Reaching this goal requires decreasing GHG emissions in

all sectors of the economy. The building sector, mainly heating and cooling, contributes significantly

to carbon emissions (Figure 4.1b). Despite some progress in recent years (Figure 4.1a), further

reductions are needed, especially in large countries such as Germany, which still rely heavily on fossil

fuel heating systems. One solution to decrease GHG emissions in the building sector is to deploy

non-fossil heating technologies, such as heat pumps. This study focuses on a simultaneous and

substantial rollout of heat pumps in several central European countries and assesses the challenges

for the power sector.
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Figure 4.1: Sectoral GHG emissions in the EU 27

As the building sector is responsible for around 13% of total GHG emissions in the EU

(Figure 4.1b), the role of this sector in reducing its overall emissions is paramount.1 Several

technological options exist that are already mature and widely available to decarbonize the building

sector (Climate Action Tracker, 2022). On the demand side, insulation, for instance, can reduce the

overall energy needs of buildings, while on the supply side, traditional fossil fuel heating solutions

have to be replaced. Among others, heat pumps are considered a crucial technology to achieve

decarbonization (IEA, 2022). A heat pump extracts heat from a source, such as the ambient air

1Importantly, these reported emissions from the building sector only cover emissions directly emitted at the building,
while emissions from the generation of electricity and heat in power plants are reported in Electricity and heat. On top of
that, emissions associated with the construction of buildings are also not contained. Hence, the overall share of building-
related emissions is larger than shown in Figure 4.1b.

58



4.1 Introduction

or the ground, and transports it to a destination where it is needed, such as a water-based heating

system within a building. Most heat supplied by a heat pump is harvested from the environment,

while the electricity is mainly used to transfer and lift the heat to a useful temperature level (IEA,

2022). Therefore, heat pumps possess two essential features: they are efficient and operate directly

with electricity. Mainly due to the latter, their usage lends itself perfectly to a decarbonized energy

system, relying almost exclusively on renewable electricity, in which heat pumps can be run directly

without an intermediary energy carrier.

However, an ambitious deployment of heat pumps does not come without challenges. Apart

from possible electricity transmission and distribution grid requirements, the direct use of electricity

by heat pumps, mentioned above as an advantage, also poses challenges for the power sector. The

rollout would not only lead to an increase in electricity demand - which would have to be covered by

additional generation capacities - but could also lead to more elevated peak loads in the power sector,

requiring additional flexibility. This flexibility could be attained, for instance, by firm generation

capacities (fossil, renewable, or storage), interconnection between countries, or by thermal energy

storage of heat pumps. As higher shares of renewable electricity already increase the need for

flexibility options, heat pumps possibly add to this need.

Several studies assess the effects of heat pumps on the power sector. Early on, Hedegaard

and Balyk (2013) point out the benefits of flexible operation of heat pumps. In a recent working

paper, A. Roth, Kirchem, et al. (2023) analyze the additional generation capacities needed for

different heat pump rollout speeds in Germany and the impact of thermal energy storage. However,

only a deployment in Germany is considered, and capacity expansion in neighboring countries is

not modeled. Altermatt et al. (2023) assess an even more ambitious heat pump rollout path for

Germany, yet neither explicitly modeling the electricity sector nor accounting for other countries.

Concerning the flexibility of heat pumps, Kröger, Peper, and Rehtanz (2023), using a detailed

modeling approach for small- and large-scale heat pumps, quantify additional peak loads through

heat pumps and shifting potentials through thermal energy storage. Yet, the heat pump expansion is

limited to Germany, and no capacity expansion effects are estimated. In a case study of the British

and Spanish market, Lizana et al. (2023) determine the optimal thermal energy storage size to shift

peak power demand, yet neither explicitly modeling the electricity sector. With respect to additional

peak loads generated by heat pumps, Charitopoulos et al. (2023) claim that heat demand peaks are

often considerably lower than values widely cited in the literature, that deep electrification of heating

can be achieved with moderately higher electricity load peaks, and that thermal energy storage plays

an important role in shifting loads. On the other hand, Buonocore et al. (2022) conclude that a

poorly executed electrification of heat in the United States (US) would require a massive expansion

of renewable energies. Using a regression-based approach in the UK, Deakin et al. (2021) estimate

the additional peak demand of heat pumps, while Chen et al. (2021) conclude that the electrification

of heat is cost-effective compared to other solutions, but lead to considerable additional demand that

has to be met - in their study - by wind energy installations. Finally, Hilpert (2020) highlight the
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importance of flexible heat pump operation in 100% renewable energy systems, relating well to the

findings of other studies.

As highlighted above, most of the literature (1) assesses heat pump deployment only in single

countries, (2) does not account for interconnection, or (3) considers only a single weather year.

Hence, this study assesses a parallel and ambitious heat pump rollout in several countries and aims

to identify its effects on the power sector in a midterm 2030 setting. While large-scale studies have

simulated decarbonization pathways for Europe, including heat pumps, this study seeks to isolate

the heat pump effect on the electricity system. I assess the required power plant additions, especially

the firm capacity additions. I estimate the impact of an important source of flexibility: I study how a

small thermal energy storage attached to the heat pumps influences the residual load and, therefore,

generation capacity needs. I also assess how much flexibility can be provided by interconnection

between countries. Crucially, I study how strongly cold spells are correlated in Europe and how they

overlap with the residual load. I do not base my analysis on a single weather year but consider six

different weather years. By relying on several years, I not only improve the stability of the results

but also provide an intuition for the variability of heat demand and its impact in Europe. Finally, I

run several robustness checks to assess the robustness of my results.

4.2 Model and Data

My analysis builds on several tools and data sources mentioned in this section. While the functioning

of the overall power sector model is explained in Section 4.2.1.2, the following subsection briefly

explains the fundamentals of the heat module used.

4.2.1 Model

4.2.1.1 Heating

I use a straightforward approach to model the interaction between heat demand for space and water

in buildings and the power sector. As explained in the subsequent Subsection 4.2.2 on data, I use as

a crucial input the heat demand for space and water for different house categories at every hour of

the year and in every country. Exogenously, I assume a share sbt,st,hpt of which heat demand hdbt,st,h

has to be covered by heat generated HObt,st,htp,h by heat pumps in every hour h of the year.2 As the

heat demand is exogenously given, it is assumed to be totally inelastic. In the present model set-up,

the model has to fulfill that heat demand and has no possibility of not serving it.

HOhp,st,h = sbt,st,hpt × hdbt,st,h, (4.1)

2If not differently noted, all parameters, variables, and equations mentioned in this section apply equally to every
country. For the reason of simplicity and readability, I omit a country-specific subscript.
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where bt is the building type (single-family, multifamily, or commercial), st the type of heat sink

(space or water), and hpt the type of heat pump (air-sourced, ground-sourced, water-sourced).

As heat pumps can be equipped with thermal energy storage, the following equation governs the

state of charge HL of that storage:

HLbt,st,hpt,h = HLbt,st,hpt,h−1 + HIbt,st,hpt,h − HObt,st,hpt,h. (4.2)

The state of charge HL increases with heat supplied HI and decreases with heat output HO. The

required heat output HObt,st,hpt,h of the heat pump can either be met using heat from thermal storage

HL or generating it HI. Obviously, the state of charge is always 0 (HL = 0) if heat pumps do not

have thermal energy storage. In that case, heat output HO and heat generated HI are equal every

hour. The size of the thermal storage, hence the maximum of HL, is determined by an exogenously

set energy-to-power ratio epbt,st,hpt that relates the maximum heat output (the installed heat output

capacity) to the size of the thermal energy storage.

To generate heat HIbt,st,hpt,h, heat pumps use electricity Ebt,st,hpt,h. The sink-, heat pump-, and

hour-specific coefficient of performance (COP) determines that process and, hence, the efficiency of

the heat pump. The higher the COP, the more heat is generated with the same electricity input:

HIbt,st,hpt,h = copst,hpt,h × Ebt,st,hpt,h. (4.3)

With the present model formulation, I treat space and water heating separately using different

COPs. The COP for water is generally lower due to the higher temperature needed compared to space

heating. While this formulation is probably slightly unrealistic for many houses with a single heat

pump system to serve space and water heating, my specification determines the electricity needed

more precisely. In any case, the difference to a model in which the entire heat of a house is served

with the same COP is not substantial, as overall heat demand for water is relatively small compared

to space heat demand.

The installed capacity of the heat pumps, with respect to heat output, electricity input, and

thermal energy storage, is not determined based on cost-optimally but is set to satisfy heat demand

every hour. Therefore, its size is chosen to meet the peak heat demand, given the COP of that hour,

in the absence of thermal energy storage.

4.2.1.2 Power sector

To measure the impact of a heat pump rollout on the power sector, I use the electricity sector model

DIETER (Zerrahn and Schill, 2017; Schill and Zerrahn, 2018; Gaete-Morales, Kittel, et al., 2021),

which derives optimal dispatch and investment decisions. This model has been used in numerous

peer-reviewed publications (e.g. H. C. Gils, Gardian, Kittel, Schill, Murmann, et al., 2022; A. Roth

and Schill, 2023b; Kirchem and Schill, 2023). DIETER is a linear cost-minimization model that

takes all 8760 consecutive hours of a year into account and optimizes investment and dispatch of
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the power sector. The model does not contain a detailed grid but assumes a “copper plate” within a

country, while a net-transfer capacity (NTC) model is used between countries. Important endogenous

variables are the capacity installation of power plants and storage, the dispatch, as well as the power

flow between countries. For a detailed model formulation, I refer to Gaete-Morales, Kittel, et al.

(2021). For this analysis, the subsequent features and assumptions characterize the model. Unless

differently stated, these hold for all model runs.

Generation In terms of generation technologies, the following are present in this analysis: variable

renewables: solar PV, onshore and offshore wind power, run-of-river hydropower; dispatchable

renewables: bioenergy, reservoir hydropower; non-renewables: nuclear power, gas-fired power

(closed-cycle turbine) (CCGT), lignite, hard coal, oil, other.

Storage Lithium-ion batteries, power-to-gas-to-power (p2g2p) storage, pumped-hydro storage:

with inflow (open PHS) and without inflow (closed PHS).

Capacity bounds In principle, capacity installations of the different generation and storage

technologies are not restricted. However, to increase the realism of the scenarios, I restrict certain

technologies with upper and lower bounds. Whenever I impose bounds, I use the values given by

ERAA 2021, using the year 2025 to take values as close as possible to current values (Table C.2).

Solar PV, on- and offshore wind have no upper capacity bounds, but lower bounds are set according

to European Resource Adequacy Assessment (ERAA). All hydro technologies (run-or-river, open

and closed PHS, reservoir) are fixed. Gas power plants have lower bounds but are not restricted to

their upper bounds. In this manner, I allow for the addition of capacity while avoiding (unlikely)

decommissioning until 2030. Similarly, I fix the values of hard coal and lignite power plants to

account for the existing fleet that will not be further expanded but is likely to stay in operation as a

backup. The capacities of nuclear power are also fixed, with the idea in mind that changes (additions

or decommissioning) are unlikely until 2030. All remaining technologies (oil, other) have upper

bounds, yet no lower bounds. The power and energy capacities of battery and hydrogen storage are

unconstrained. Please note that some of these assumption are altered in the robustness checks. All

capacity bounds are shown in Table C.2.

Generation bounds No bounds for yearly total generation are set for any technology except for

bioenergy, for which I constrain generation to 2022 values (Ember, 2023).

Net-transfer capacities The net-transfer capacities between countries are fixed exogenously and

are based on ERAA 2021, using the year 2025.

Renewable electricity share No minimum share of renewable electricity production on total

electricity production or consumption is assumed.
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CO2 price A price of 150 Euro per ton of CO2 emitted is assumed.

Countries The scenarios entail the following nine countries: Austria, Belgium, Denmark, France,

Germany, Italy, Luxembourg, Netherlands, and Switzerland3.

4.2.2 Data

Technology and costs For the technology and cost data, I rely primarily on Gaete-Morales, Kittel,

et al. (2021). Table C.1 shows the values.

Heating demand time series Relying on the When2Heat dataset (Ruhnau, Hirth, and Praktiknjo,

2019) and its latest update and extension (Ruhnau and Muessel, 2022), I use the total national space

and water gas heat demand. The database provides hourly profiles of heat demand differentiated

between different building types (single family, multifamily, commercial) and sink (space and water),

and hourly COPs for different types of heat pumps (air-sourced, ground-sourced, ground-water-

sourced), separated for sinks. The heat demand data are available for the years 2009–2015.3

Renewable availability and electricity demand time series The data provided by ENTSO-E,

used in ERAA 2021, has time series of renewable availability, hydro inflows (Pan-European Climate

Database), and electricity demand for different weather years of all European countries. Specifically,

I rely on the machine-friendly version of De Felice (2022).

4.3 Scenarios

Given the features and assumptions in the previous section, I model the heat pump deployment by

requiring a certain share, 25%, of total heat demand to be covered by heat pumps. Please note

that for simplicity, I assume the same share for single-family houses, multiple-family houses, and

commercial buildings, as well as space and water. I also consider only one type of heat pump, air-

sourced, to cover the heat, with the idea that air-sourced heat pumps (ASHPs) currently dominate

the market. It is important to mention that I do not model heat demand in a strict bottom-up way.

Therefore, I do not assume anything about the part of existing electricity demand used to generate

heat or the remaining heat demand not covered by the model. Therefore, the model and scenario

definitions implicitly assume that I only assess the effect of additional heat pumps that cover 25% of

total building heat demand additionally.

Table 4.1 provides an overview of the definition of my base scenarios. As a reference, I conduct a

scenario run in which no heat has to be covered by heat pumps. In the two other scenarios, 25% of the

heat has to be covered by heat pumps with varying sizes of thermal energy storage. In one scenario,

3As heat demand data for Switzerland is missing, Switzerland is part of the analysis and optimization, yet not heat
pump rollout is simulated there.
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all heat pumps are equipped with thermal energy storage sized at two hours of the maximum heat

output. In the other scenario, this size is zero; hence, no thermal energy storage is available. I assume

that heat pump owners are faced with wholesale electricity prices and operate their heat pumps in a

system-friendly way. The advantage of thermal energy storage is the possibility of moving electric

demand induced by heat demand to hours, in which the residual load (total load minus the generation

of variable renewable electricity) is lower; hence, prices are lower. Another advantage of moving heat

pump load away from hours of heat demand (and likely lower temperatures) is that heat pumps can

possibly generate heat in hours of higher temperatures, therefore higher COPs, lowering the overall

electricity demand of heat pumps.

Every scenario run is conducted for six weather years (2009-2014). To adequately capture the

heating period in each year, I do not run the model from January to December, as it is commonly

done in energy system modeling, but from July to June. If a specific weather year is mentioned in the

following, I refer to the period starting in July and ending in June of the following year. For instance,

the year 2009 would refer to the period July 2009 to June 2010.

Table 4.1: Definition of base scenarios

Heat share E/P ratio of thermal storage

0% -
25% 0
25% 2

To check the robustness of my results, additional scenario runs are employed, in which specific

assumptions are varied (Table 4.2). For all robustness checks, a scenario with no heat pumps and a

scenario with 25% heat covered by heat pumps is conducted. In all runs, heat pumps are equipped

with a two-hour thermal heat storage. All scenarios are run for six weather years.

The scenario gas_free removes the lower bounds of gas-fired power plants, checking whether the

model would prefer to install less CCGT capacity. no_nuc assumes a nuclear power plant fleet that is

50% lower than current values, assessing the impact of a partial nuclear phase-out. no_coal assumes

a total decommissioning of lignite and hard coal-fired power plants. no_ntc is a counterfactual

scenario in which no power flows between countries are possible, estimating the importance of cross-

border electricity trade. As wind power might face expansion restrictions, wind_cap is a scenario in

which wind on- and offshore capacities can only be expanded by 50% beyond ERAA 2021 values.

4.4 Results & Discussion

Before showing and discussing the principal model outcomes of the scenarios, a few fundamental

facts about heat pumps and heat demand regarding the scenarios are presented; then, hours and

periods of peak heat demand are analyzed; and, finally, the main outcomes, primarily generation

capacities, are shown.
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Table 4.2: Robustness checks

Scenario Description

gas_free No capacity (lower or upper) for gas-fired power plants.
half_nuc Nuclear power plant capacities fixed at 50% lower value compared to base.
no_coal No hard coal or lignite power plants.
no_ntc No electricity flow between countries.
wind_cap Upper bounds for on- and offshore wind power capacity at 50% above ERAA 2021

values.

In the base scenario, 25% of total space and water heating is supplied by ASHPs, leading to

a substantial electricity demand (Figure 4.2). For instance, Germany would need to cover around

52 TWh in addition to its already existing load of 555 TWh, roughly an increase of ten percent. As

explained in section 4.2, the size of the heat pumps in terms of electricity input, heat output, and

thermal storage capacities are not determined endogenously but are set so that heat demand can be

covered in every hour, even without thermal storage. With these assumptions in mind, Table 4.3

depicts the installed heat pump capacities that would follow the requirement to cover 25% of total

building heat demand with ASHPs. Relevant for the electricity sector is the installed electricity input

capacity of heat pumps, which would reach almost 40 GW in Germany and over 20 GW in France.

Country Heat output (GWth) Heat storage (GWhth) Electricity input (GWel)

AT 5.5 11.0 3.5
BE 8.8 17.7 5.1
CH 0.0 0.0 0.0
DE 63.8 127.5 39.7
DK 3.9 7.8 1.9
FR 41.1 82.2 20.9
IT 29.2 58.4 13.9
LU 0.7 1.3 0.4
NL 12.5 25.0 6.8
All 165.4 330.9 92.0

Table 4.3: Heat pump capacities
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Figure 4.2: Yearly electricity demand

Note: The values depicted result from the base scenario with thermal energy storage of two hours and the weather year
2009.

4.4.1 Heat demand peaks and total heat demand do not align

As mentioned above, a simultaneous heat pump rollout could pose several challenges for the

European electricity sector in terms of overall electricity needed and additional peak loads. Re-

garding these questions, a sensible approach is to first look at the overall structure and principal

characteristics of heat demand for the countries included in my analysis (Figure 4.3). Not

surprisingly, heat demand increases in winter in all countries (Figure 4.3a). The figure also reveals

the dimensions of energy needed for residential and commercial heating of buildings: at the peak,
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4. Power sector impacts of a simultaneous European heat pump rollout

almost five TWh of thermal energy were used per day for space and water heating in Germany in

residential and commercial buildings in the year 2012. Despite the correlational appearance of heat

demand, suggested by Figure 4.3a, heat demand patterns are more nuanced. The winter of 2011-2012

serves as a good example, in which heat demand showed only a partial correlation in the months of

December and January. Yet, a cold spell hit the continent in mid-February, and heating demand

surged simultaneously. Scaled to its maximum yearly value, total daily heat demand peaked in all

countries around the same time (Figure 4.3b). Two insights for the energy system might arise: even

a mild winter can be a strain if it contains a short cold spell, while moderately cold winters might

be less of a challenge if they do not go beyond the expected. Related to this question, no clear

relationship can be found between total heating energy needed and peak heating needed: Figure 4.3c

shows the yearly (July-June) heating demand for each country in bars (left axis), while the dots

depict the maximal hourly heat demand, scaled to the overall maximum heat demand of the period

2009-2014 (right axis). The hour of maximum heat demand in the period 2009-2014 occurred in

all countries in 2011. In other years, the respective maximum heat hours show considerably lower

values. Interestingly, 2011 was clearly not among the coldest years, as overall heat demand is lower

than in years before and after. As peak heat demand was the highest, peak and total heat demand do

not need to coincide.
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Figure 4.3: Heat demand
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4.4.2 Heat pump load peaks do not necessarily align with residual load peaks
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in which the sum of all countries is at its maximum. The size of that associated gray marker is not to scale. In panel (c),
the residual load does not contain the electricity demand of heat pumps.

Figure 4.4: Maximum heat demand, heat pump load, and residual load: size and hour

However, it is important to acknowledge that the analysis of peak heat demand, even for several

countries, does not fully capture the actual challenge for the electricity sector. While cold spells

could lead to severe peak loads by heat pumps, consequences would be limited if these hours were

accompanied by a high generation of renewable electricity. Therefore, it is helpful to analyze the

relationship between the residual load, defined as electricity demand minus the generation of all

variable RES (photovoltaic, wind on- and offshore, and hydro run-of-river), and peak heat demand

(Figure 4.4): the occurrence of the hour of the maximum heat demand of every country in every year,

as well as its relative size (indicated by the diameter of the circle) is depicted (4.4a), as well as the

hour of maximum heat pump load (4.4b), and the hour of the maximum residual load (4.4c). The

hour of maximum heat demand can be found in the winter months. Varying between the years, hours

of maximum heat demand normally occur between the hours 4000 and 5500 (starting July 1st). In

some years (like 2012), there is a coincidence of all maximum hours, while in other years (like 2010),

no alignment can be seen. In many years, the hour in which the sum of heat demand of all countries

is maximal also coincides with the maximum hour in the individual countries. As Figure 4.4 depicts

values of a scenario in which heat pumps are equipped with thermal energy storage of two hours,

the maximum heat pump load (4.4b) does not necessarily coincide with the maximum heat demand

(4.4a). In some countries and in some years, the maximum heat pump load and maximum heat

demand align, such as in the year 2012. However, for many years, the maximum heat pump load

is at a different hour than the maximum heat demand, suggesting that the model has used thermal

energy storage to disentangle heat demand and heat pump lead. For the impact on the power sector,

though, it is relevant to see whether the maximum heat pump load coincides with the maximum

residual load. Only if they fall together, the power sector would be strained, and additional (firm)
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4. Power sector impacts of a simultaneous European heat pump rollout

generation capacity would be needed to cover the load. Like heat demand, all maximum residual

load events can be found in the winter period (4.4c). The exact occurrences of the peak residual load

hours vary quite strongly between years. Just like heat demand, they fall together in all countries in

some years (2012), while they do not in others (2013). Most importantly, in many years and many

countries, including the sum of all countries, maximum heat load and maximum residual do not align,

suggesting a possible limited impact on the power sector. Yet, for the years 2011 and 2012, they align

very well (roughly after the hour 5000), which should reflect a higher need for firm capacity in these

years. The alignment could exist because wind speeds could be correlated with temperatures, and

the existing electricity demand could already cover part of the heat demand, hence peaking in the

same hour. It is also important to mention that the figure depicts only the hours of maximum heat

demand, heat pump load, and residual load. However, the hours with the second, third, etc. highest

values could show a different correlational structure. Hence, Figure 4.4 only shows a limited picture.

4.4.3 Periods of positive residual load and heat deviation overlap sometimes

However, the analysis of coincidence between the maximum heat pump load and residual load draws

only a partial picture. The challenge for the energy system does not only arise from single hours

of high (residual) load but also from more extended periods of low temperatures on the one side

and longer periods of a positive residual load on the other side (Figure 4.5). If these two types

of periods fall together, heat pumps add strain to the power sector. To analyze the occurrence of

these two types of periods, the maximum heat deviation events, defined as the cumulative sum of

positive differences between the hourly heat demand and its average value are depicted (Figure 4.5a).

When heat demand falls below its average value, a “new” event starts. Therefore, it is likely that

the true length of the cold periods is underestimated. The difference from the average is a good

indicator of “cold spells” creating possible difficulties for the power sector. For better visualization

and comparability, the summed energy value of each event is related to the value of the maximum

event in each country and year. The event with the largest positive heat demand deviation is labeled

with a “1”, and all the others, respectively, have values between zero and one depending on their

relative size. Like in the analysis of hours of maximum heat demand, the maximum heat deviation

events often align between countries, suggesting that they are driven by the same weather patterns.

Please note, though, that the gravity of the events can be quite different between countries, as only the

relative value to the maximum event of each country in each year is shown here. Years like 2010 and

2013 show how strongly heat deviation events can be correlated, suggesting that all countries were

affected by the same weather events. Conversely, years like 2011 and 2014 depict shorter and less

correlated events. Yet, maximum events in one country happen often in parallel to near-maximum

events in other countries. With respect to positive residual load events, the picture looks a bit different

(Figure 4.5b). Periods of consecutive positive residual loads are shorter than heat deviation events.

Yet, it is important to remember that the yellow events are only the biggest and are terminated when
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Figure 4.5: Maximum heat deviation and residual load events

the residual load turns negative. Therefore, if not accounting for these short periods of negative

residual load, one could define these positive residual load events even longer.

Relevant to the power sector is whether there is an overlap between heat demand events and

residual load events. Similarly to the previous analysis of maximum hours, the answer is mixed:
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4. Power sector impacts of a simultaneous European heat pump rollout

while in some years, a clear overlap between the largest (and close-to-largest) residual load events

and heat events (such as in 2010 and 2011) can be seen, in other years they do not fall together (such

in 2014). This finding, combined with the insights drawn from Figure 4.4, again shows the need to

use several years in any energy system analysis to properly account for all possible phenomena and

interactions. If the analysis of several years is not feasible, a careful study of weather years, which

includes renewable energy availability and temperatures, is necessary to choose the appropriate year.

4.4.4 Thermal energy storage reduces the need for firm generation capacity
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Figure 4.6: Overview generation capacities

A substantial rollout of heat pumps requires additional electricity, hence additional power plant

capacities. Figure 4.6 depicts total generation capacities in all countries, with and without heat

pumps, for all weather years. Already in the scenarios without heat pumps, the electricity sector

is rather wind-focused (217-297 GW), with capacity varying quite strongly between weather years.

Solar PV is also installed at a sizable dimension (225-246 GW). As assumed for the base scenario,

nuclear power, as well as coal (lignite and hard) are fixed, while gas-fired power has a lower bound.

As the model chooses to keep the capacity of gas-fired power plants at that lower bound, it suggests

that even lower capacities could be cost-optimal (see Section 4.4.5).

The introduction of additional heat pumps leads primarily to more onshore wind power (20 to

80 GW) and p2g2p storage (5 to almost 40 GW). Figure 4.6 shows the totals for every weather year,

while Figure 4.7 depicts the changes as a box plot. P2g2p storage can be seen as a “proxy” for

firm capacities. Interestingly, the model favors p2g2p storage over expanding gas-fired power plants,

likely because of high CO2 prices. Offshore wind power is also added in some years, yet at lower

levels, due to the relatively high costs.
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As shown in Figure 4.7a, equipping heat pumps with two-hour thermal energy storage leads to

sizable differences in added capacities. While in the case of no thermal storage, the deployment

of heat pumps leads to additional onshore wind capacities of between around 20 and 80 GW, these

additional capacities are reduced to 20 to around 65 GW in the case of a two-hour thermal energy

storage. Equally, the additions of p2g2p and lithium-ion battery storage and offshore wind power

are smaller or even negative. Depending on the weather year, the onshore wind power capacity is

expanded between 10 and 30%, while solar PV changes hardly.

Zooming in on only the firm capacities, the difference between the two scenarios is quite visible

(Figure 4.7b). The two-hour thermal storage can avoid almost 20 GW of additional firm capacities, in

my scenarios, mainly p2g2p storage. If no thermal storage is allowed, sizable capacities of lithium-

ion battery storage are added with the deployment of heat pumps, which add intraday flexibility.

Allowing for the thermal energy storage, the additional lithium-ion batteries are not needed, as the

thermal energy storage takes over that role, and even a reduction in lithium-ion batteries with the

rollout of heat pumps can be seen.
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Figure 4.7: Changes in aggregated generation capacities

The effect of the thermal energy storage can also be nicely seen with the analysis of residual

load duration curves (Figure 4.8). The figure depicts the first 50 hours of the residual load duration

curves of the entire “system”, hence all countries. The dotted lines are the curves without the heat

pump load, while the solid lines refer to the residual load duration curves with the heat pump load

included. The left panel, the setting without thermal energy storage, reveals the direct impact of the

heat pump load on the residual load. For instance, in the year 2009, there is a difference of almost

70 GW in residual load: heat pumps can add a lot of residual load! Not surprisingly, results differ

quite substantially between years. The right panel displays the residual load duration curves in the

scenario in which heat pumps are equipped with thermal energy storage of two hours. Compared

to the left panel, the dotted lines, which are residual load duration curves without heat pump load,
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are almost the same. However, the solid lines are placed considerably lower, which shows that

heat pumps in that scenario add considerably less residual load. For instance, in the year 2009, the

difference between the two lines is considerably smaller, and the load added by heat pumps is now

less than 50 GW. The effect visualized in this figure fits well with the results about additional firm

generation capacities (Figure 4.7b), discussed above, and shows the importance of even — rather

small — thermal storage for smoothing heating demand.
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Figure 4.8: Residual load duration curves

4.4.5 Further results and robustness checks

To better understand the quality of the results presented, a number of robustness checks are conducted

in which some core assumptions of the model are varied. In the following, the generation capacity

results and the impact on total system costs are presented and discussed.

Section 4.3 describes the assumptions of the additional scenario runs. Please remember that

all robustness scenarios (Table 4.2) are conducted with heat pumps that have a two-hour thermal

energy storage available. With respect to generation capacities, Figure 4.9 provides an overview of

the capacities installed without heat pumps (4.9a) and the changes due to heat pump deployment

(4.9b). Several insights are paramount: if capacities of gas power plants are not fixed (scenario

gas_free), the model chooses to remove them entirely and invests mainly in additional p2g2p storage

and onshore wind plants (compared to scenario base). That effect can be explained by the high CO2,

which renders, in turn, the operation of gas-power power plants costly. Regarding p2g2p storage,

the scenarios half_nuc, no_coal, and no_ntc foresee higher investments to replace either missing

firm capacity or due to the removed flexibility without electricity exchange. The scenarios half_nuc
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and no_ntc foresee considerably higher capacities of onshore wind power to replace missing energy

generation and trade. The scenario no_ntc also foresees considerably higher solar PV capacities,

not surprising as every country has to work in autonomy and therefore requires an overall more

balanced power plant portfolio. Finally, the scenario wind_cap leads to very high capacities of solar

PV compared to base, to replace the electricity formerly generated by onshore wind power.

The deployment of heat pumps has different effects on installed generation and storage discharge

capacities (Figure 4.9b). Compared to the base scenario, additional on- and offshore wind power

capacities are relatively similar, which is also not too surprising given the restrictions of the model

and the high CO2 price: (onshore) wind power is the most cost-effective technology to provide

the additional electricity needed. In the scenario wind_cap, the heat pump rollout leads to mainly

additional solar PV capacity, as on- and offshore wind capacities are already close to or at their

respective upper bounds. Regarding the firm capacities, comparable dynamics can be seen in most

scenarios, and several insights can be drawn: the additional heat pumps require additional firm

capacities, which are provided by the p2g2p storage. Depending on the year, the assumed heat

pump rollout can require between a few and almost 20 GW of additional p2g2p storage (in the

base scenario). With higher capacities of p2g2p storage, lithium-ion batteries are pushed out of the

system. In a system without interconnection (scenario no_ntc), the additional p2g2p capacities are

similar to the ones in base, suggesting that interconnection provides only little additional flexibility

to cope with the heat pump load. This aligns with the insights from the previous section 4.4.2,

which demonstrated that heat demand peaks and strong heating periods overlapped between many

countries. The two scenarios gas_free and no_coal trigger unsurprisingly additional investments

into p2g2p storage to replace the missing firm capacities. The scenario half_nuc is similar to base,

suggesting that the nuclear power plants (mostly in France) are indeed not crucial in delivering firm

capacities to cover peak loads from heat pumps.

With respect to the different scenarios, total system costs are similar in the scenarios base,

half_nuc, and no_coal, with even lower values in the latter two (Figure 4.10). The most expensive

scenarios are no_ntc and wind_cap. Especially in the latter, the additional heat pumps increase

system costs considerably. In the former, total system costs are on a higher overall level, but the

introduction of heat pumps leads to a similar cost increase as in the base scenario, suggesting that

an interconnected system does not provide much flexibility to cover the additional heat pump load.

For the wind_cap scenario, costs without heat pumps are not much higher compared to the scenario

base, yet increase substantially with the heat pump rollout, showing the compatibility of (onshore)

wind power and heat pumps (cf Ruhnau, Hirth, and Praktiknjo, 2020). The impact of thermal heat

storage on total system costs is small. Finally, Figure 4.10 shows again the variability of results with

respect to weather years. Consistently, the year 2010 constitutes an upper outlier, while 2014 is a

lower outlier. Further figures on the total electricity generation (Figure C.3) and on all residual load

duration curves (Figure C.2) can be found in the appendix.
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Figure 4.9: Generation capacities in the robustness checks

The introduction of heat pumps leads to an increase in total system costs of around 5 billion Euro,

as additional generation capacities need to be installed and additional electricity generated. These

costs just reflect the costs of the electricity sector and do not account for the costs of heat pumps, for

instance. As shown in Figure 4.3c, total heat demand in my system ranges around 1,300 TWh. If heat

pumps would cover 25% of that demand, they would supply around 325 TWh of heat, translating

to a price of 15.5 Euro per MWh. That price level is well below current wholesale prices of natural

gas (around 40 Euro per MWh at the time of writing), assuming that the heat supplied with heat

pumps had been previously generated by only burning natural gas with an efficiency of 100%. This

calculation does not even account for the CO2 price to be added to the gas bill. Therefore, it is

evident, at least in terms of variable costs, that the additional expenses for the electricity sector costs

are very favorable compared to the expenses for natural gas needed to generate the same amount of

heat.
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Figure 4.10: Total system costs

4.4.6 Limitations

As in any model-based analysis, my results depend strongly on data and scenario assumptions.

Regarding the modeling of heat, I make several simplifying assumptions such that I do not model

the detailed physical properties of heat pumps, only considering one heat pump technology, and also

abstracting from potential flexibility by existing heat pumps as I only model additional units. Also, I

exogenously set the share of heat covered by heat pumps and assume the size of the thermal energy

storage instead of determining these variables endogenously. I abstract from any market incentives

for consumers to operate heat pumps in a system-optimal way but assume they act in a system-

friendly manner. My analysis could also be improved by adding more countries and weather years.

Finally, I abstract from any detailed transmission and distribution grid modeling.

4.5 Conclusion

Heat pumps are a cornerstone in decarbonizing the heat supply of European buildings. Yet, their

deployment does not come without challenges for the power sector. The present analysis evaluates

a simultaneous heat pump rollout in several European countries, which allows several conclusions

to be drawn. First, an ambitious rollout requires the installation of additional electricity generation

capacities. Covering 25% of total heat demand in buildings by air-sourced heat pumps would require

around 50 GW of additional onshore wind power capacity, alongside additional storage and firm

capacities of far lower magnitude. In the case of expansion limits of onshore wind, the additional

electricity could also be supplied by solar PV in combination with storage. Second, the flexibility of

heat pumps is critical. Even a small thermal energy storage in combination with a system-friendly
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operation of heat pumps leads to a sizable reduction in peak loads and, therefore, firm capacity needs.

Third, the interconnection between countries does not substantially help to reduce generation (and

firm) capacities, as cold spell events are correlated. Hence, fourth, it is paramount to understand

properly the nexus of heat demand and renewable energy supply in order to adequately assess the

challenges of a further electrification of heat. Fifth, the additional costs of the electricity sector are

very favorable compared to expenses for natural gas to generate a similar amount of heat. Finally, the

present analysis shows again the variability of results with respect to different weather years. Thus,

the statements of policy-informing studies should be interpreted with the insight in mind that results

might strongly vary depending on weather data. The choice of the “right” weather year, the usage of

multiple weather years, or even better, the modeling of multi-year periods periods are possible ways

forward.
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5. Not only a mild winter: German consumers change their behavior to save natural gas

5.1 Introduction1

By the start of the 2022/2023 heating season, Germany and many other European countries found

themselves facing a potential gas supply shortage in the wake of Russia’s invasion of Ukraine. In

search of a response, authorities called on residential and commercial sectors to save natural gas.

Exploiting winter 2022/23 as a “natural experiment”, we shed light on the magnitude of behavioral

gas savings using open data and a machine learning method. Despite being exposed to incomplete

price signals, we find significant behavioral gas savings by German households and businesses,

contributing to closing the supply gap. We uncover temperature-dependent saving dynamics and

discuss the potential roles of different drivers of this change. Finally, we highlight the pivotal role

of a timely and continuous provision of openly accessible data and analysis to inform the general

public as well as policymakers.

5.2 Context

The Russian invasion of Ukraine in February 2022 has created an unprecedented supply crunch in

European natural gas markets. Up until February 2022, Russia had been Europe’s largest supplier of

natural gas, expanding its position in prior years. Doubting the reliability of Russia’s gas supplies, the

question of whether enough gas would have been supplied to the European market led to spiraling

wholesale gas prices. At the end of August 2022, prices peaked at over 300 Euro per MWh at

the benchmark hub TTF after Russia stopped delivering gas through its Nord Stream 1 pipeline

(TradingEconomics.com, 2023). Slowly rising in the months prior to the invasion, prices had been

fluctuating around 20 Euro per MWh in recent years (TradingEconomics.com, 2023). Following

the closure of Nord Stream 1, the security of supply was called into question with respect to the

upcoming winter of 2022/23 (Murphy, 2022).

Within a year, (Central) Europe’s gas supply structure changed radically. While historically,

around 40% of all gas imported to Germany had been coming through Russian pipelines, this number

dropped to almost 0% by the end of 2022 (Schill and A. Roth, 2023). Much of the Russian supply was

substituted by additional pipeline imports from Norway and liquefied natural gas (LNG) shipments

from other countries. The remaining potential shortfall gave rise to a discussion on how much gas

could and would be saved by whom.

With respect to gas consumption, there are three principal groups: gas-fired power plants, large

industrial consumers, and the residential and commercial sectors, which comprise households and

small- and medium-sized businesses. Gas-fired power plants consume gas for electricity production,

yet some also supply heat to district heating networks. Large industrial consumers use gas either as

feedstock or source of process heat. The residential and commercial sectors need gas predominantly

to satisfy heat demand.
1Wolf-Peter Schill is thanked for his very helpful comments and remarks. This work benefited from a research grant by

the German Federal Ministry of Education and Research (BMBF) via the Kopernikus project Ariadne (FKZ 03SFK5N0).
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These consumer groups are different in terms of the price signals they receive, as well as the

potential for and consequences of gas demand reductions or enforced curtailment. Gas-fired power

plants usually buy gas short-term to serve peak electricity demand and thus react immediately to

price signals in both electricity and gas markets. Provided there is sufficient alternative electricity

supply, e.g. from coal-fired power plants, gas demand from the power sector is rather flexible. Large

industrial consumers, unless protected by long-term gas supply contracts or comprehensive hedging,

are similarly exposed to price changes in the spot market and therefore have an incentive to reduce

gas consumption in case of a supply crunch. At least in the short run, the industry can reduce its gas

consumption by curbing production, substituting the energy carrier, or buying alternative upstream

products. Mostly supplied under fixed-price contracts, residential and commercial consumers do not

bear the consequences of rising prices in the spot market until a contract has to be renewed. Even

in the case of an acute gas shortage, it is not clear whether a controlled gas curtailment of supply

to residential and commercial sectors in the distribution grids would have been possible, as it would

have been challenging to implement for various technical (Winkelhahn, 2022; Murphy, 2022) and

political reasons.

In the face of a looming gas shortage, the public debate initially concentrated on industry halting

production, leading to a strong economic downturn, the size of which was debated controversially

among economists (Bachmann et al., 2022; Krebs, 2022). To avoid dire economic consequences

of production cutbacks of industrial consumers and because of limited means for the government

to impose rationing, voluntary savings by residential and commercial sectors eventually gained

importance in closing the gas supply gap.

5.3 Gas savings from changes in behaviour

Since the beginning of the gas supply crunch, Germany has been the focus of discussion due to

its large economy and relatively high dependence on Russian gas imports. In September 2022,

the German Federal Network Agency Bundesnetzagentur announced that a 20% reduction in gas

consumption (compared to the average consumption of the preceding four years) would have been

necessary to avoid an acute gas shortage (Bundesnetzagentur, 2022).

In the following, we aim to shed light on the efforts by residential and commercial sectors to

save gas. The strong dependency of residential and commercial gas demand on weather conditions

implies that relatively warmer or colder weather has a large effect on whether the target is actually

achievable or not. Building on a rich literature on the relationship between heat demand, gas demand,

temperatures and prices (Henley and Peirson, 1997; Wojdyga, 2008; Ruhnau, Stiewe, et al., 2022;

Bantle and Wiersich, 2022), we use a very flexible machine learning method to isolate those gas

demand drivers that are not governed by weather variations. We subsume these drivers as the

behavioral component.
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The method used in this commentary to estimate savings is a causal forest, which has two

important features: (1) It is fully non-parametric and data-driven, and (2) it allows isolating savings

effects differentiated by temperature. Causal forests (Athey and Imbens, 2017) extend a classic

machine learning algorithm, random forests Breiman, 2001. The general idea of random forests is

to partition the data set based on values of explanatory variables and fit local models within these

partitions, which are together capable of representing non-linear relationships without having to

specify a functional form. Causal forests extend this concept by using the same logic as a tool to

identify local saving effects. We provide extensive explanations, details, and robustness checks of

our model in the Supplemental Information (D.2) section. The causal forest model enables us to

predict daily behavioral savings depending on the weather conditions of the day. In order to control

for weather conditions, we include mean, minimum and maximum temperatures of a given day as

well as several lags to control for thermal inertia. Irradiation effects are proxied by sunshine duration,

and we include month and weekend/holiday indicators to account for behavioral variations.

Our model allows us to recover two alternative scenarios of estimated consumption. The first

scenario is the estimated actual consumption, including behavioral savings. The second scenario is

the estimated counterfactual consumption, which would be expected in the absence of the savings.

By design, the difference between these two scenarios yields our estimate of behavioral savings.

By focusing on estimated counterfactual consumption and estimated actual consumption (instead of

observed consumption), we ensure a like-for-like comparison and that our savings are not driven

by random error. This assumes implicitly that the model errors, given by the difference between

the estimated actual consumption and the observed consumption, would have been the same in the

absence of behavioral savings.

In the upper panel of Figure 5.1, the estimated actual consumption is depicted as a solid black

line, while a solid red line represents the estimated counterfactual consumption (in the absence of

savings). The dashed black line gives the observed consumption. We start measuring the savings

effect as of September 2022, when the risk of a supply shortage became pressing with the start

of the heating period and the end of Nord Stream deliveries. Nonetheless, our model allows for

the possibility of behavioral savings from the beginning of the Russian invasion of Ukraine on

24 February 2022. We discuss the implications of this assumption in detail in the Supplemental

Information section (D.2).

Gas consumption has been going up as expected with colder temperatures (Figure 5.1). With

the beginning of the heating season in September, we see that German residential and commercial

sectors have consistently saved between 66 and 285 GWh of gas per day. As revealed in the lower

panel of Figure 5.1, estimated savings are statistically significant for all days in the September to

December period. December 2022 was exceptionally cold, also reflected by spiking gas demands.

Around the Christmas period, savings efforts diminished. Cumulatively, we estimate that households

and commercial sectors have saved ca. 23 TWh [95% CI: 18.7; 27.3] by changing their behavior from

the beginning of September until the end of December 2022.
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Figure 5.1: Actual and counterfactual gas consumption

Relying on the results above, we can attribute the differences in gas consumption between

2022 and the average of the period 2018-2021 to different effects (Figure 5.2). The weather effect

(grey) is computed as the difference between the 2018-2021 average consumption and the estimated

counterfactual consumption in 2022. Behavioral savings (red) result from the difference between

estimated actual and counterfactual consumption. The sum of weather and behavioral savings does

not add up to the total difference in consumption, represented by the solid line, due to the unobserved

error component discussed above. The 20% savings target defined by German Federal Network

Agency is reflected by the dashed line.

Total savings compared to the average of 2018-2021 varied substantially between different weeks

(Figure 5.2). This variation is mostly driven by the weather component. Meanwhile, the behavioral

component remains relatively stable, slightly increasing over time. Compared to 2018-2021, we

observe two cold spells: one in September (as of calendar week 36) and one in mid-December (as of

calendar week 50), in which the weather component drove up gas consumption. Even in these colder
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Figure 5.2: Gas savings disaggregated into weather and behavioral components vs 2018-21 average

periods, estimated behavioral savings did not change much. In the last two weeks of the year, savings

decreased slightly compared to the previous weeks. This may be explained either by the Christmas

period or by a reduced urgency, as it became increasingly evident by December that a gas shortage

in the winter of 2022/23 would be rather unlikely. Gas storage levels remained well above the range

of previous years.

On aggregate, we find that the weather effect alone did not play a significant role when comparing

the September to December 2022 gas consumption with previous years (right panel of Figure 5.2).

At least for the first half of the winter, this is possibly at odds with other analyses asserting that a

comparably mild winter induced most savings Blas, 2023. Consistent behavioral savings contrast

highly variable weather-related savings. Especially the cold spell in December offset most of the

savings by weather due to milder temperatures in the weeks before. However, the weather may have

had an indirect effect, as a colder winter would have made it even harder for households to save gas

in the same way.

The winter months of 2022 also shed light on the savings dynamics of the residential and

commercial sectors relative to temperatures. We find a negative relationship between relative gas

savings, defined as absolute gas savings divided by estimated counterfactual consumption, and

temperature (lower panel, Figure 5.3). The residential and commercial sectors seem to relatively

easily suppress their heating demand when temperatures are rather mild. These levels of relative

savings cannot be carried over to lower temperatures. If outside temperatures are around 12°C,

decreasing heating efforts by a certain amount will have a much lower effect on room temperatures

compared to a situation when outside temperatures range around 0°C.
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Figure 5.3: Correlation between behavioral savings and mean temperature

Regarding the relevance of averting a gas shortage, relative savings are, however, only of minor

importance. Therefore, we highlight the substantial and consistent absolute savings during cold

temperature days (upper panel of Figure 5.3). Although they fell short of the targeted 20% goal by

the federal regulator, they added more to adverting a gas shortage than the higher relative savings in

autumn.

5.4 Conclusions and outlook

Winter 2022/23 happened to be a “natural experiment” for Europe and Germany on how the economy

would react to a gas supply crunch or even a looming shortage. It tested the capacity and willingness

of households and commercial consumers to cut gas demand mainly used for heating. Using a data-

driven causal forest model, we can show that residential and commercial sectors have reduced their

gas consumption. In contrast, the weather had even an increasing effect.

The reasons for these savings could be manifold, including but not limited to increased prices,

clear communication by officials, changed expectations, and political conviction and solidarity.

As most of Germany’s residential and commercial sectors face fixed price regimes, wholesale

market price spikes usually do not affect consumers directly. Short-lived price hikes on the wholesale

market typically do not translate into higher long-term retail tariffs. For the prolonged price increase

in the wake of the Russian invasion of Ukraine, average retail prices only reacted sluggishly (Ruhnau,

Stiewe, et al., 2022). Furthermore, staggered contractual periods and the unavailability of individual-
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level consumption data make it challenging to compute precise price elasticities at the retail level.

Notwithstanding, higher prices have certainly affected the estimated behavioral savings. Yet, the

precise impact of prices on German residential and commercial sectors remains, for the moment,

opaque.

As we observe savings despite incomplete price signals, we suggest they might have also been

driven by a response to public communication. As September came to an end, Germany had

experienced a colder start into autumn than usual, and the German Federal Network Agency, Bun-

desnetzagentur, and its president urged residential and commercial sectors to reduce consumption.

Consequently, the agency released the aforementioned target of a 20% demand reduction. The

president repeated this plea several times. In addition, consumers could have saved additionally

in expectation of higher prices. Clear communication by the Federal Network Agency raised public

awareness of the role of storage levels and their effect on wholesale prices and, eventually, contract

prices. Consumers are likely to have understood that lower consumption levels today would keep

storage levels sufficiently high in order to avoid costly additional imports. Other reasons might have

played a role as well. Some consumers could have regarded saving gas as a part of responsible civil

behavior. Political beliefs towards the support of Ukraine (or Russia) could also have (de-)motivated

the savings behavior of some households.

Importantly, we want to highlight the essential role of continuous and timely data provision and

analysis for public debate and policymaking. Transparency and publicly available data are crucial

for consumers and policymakers, not only to better understand the topic but also to track whether

measures and their efforts have any effect. In autumn 2022, little publicly available evidence existed

on whether and how strong the residential and commercial sectors would help in savings gas to

avoid a potential gas shortage in the winter months. Several platforms began to publish analyses on

various aspects of the energy crunch, such as consumption data, storage levels, prices etc. On the

“Open Energy Tracker” (Schill and A. Roth, 2023), we have been tracking behavioral gas savings

of residential and commercial sectors since October 2022, providing the public with timely insights.

The results and methods in this commentary are based on those published in a less elaborate form on

the “Open Energy Tracker”.

Despite the impact that data and analyses might have already had on policy and consumer

behavior in this gas crisis, improved data quality, e.g., by means of an accelerated smart meter roll-

out, could yield further benefits. It could enhance the quality of the analysis by uncovering drivers

of consumer behavior and thereby increase the policy relevance of real-time analyses. It could also

allow for more direct pricing mechanisms that prompt an immediate consumer response to wholesale

market developments.

Finally, all results in this piece can only be regarded as a snapshot in time, and a complete

picture will only emerge in a continued analysis. The estimates presented in this commentary will be

continuously updated online (Schill and A. Roth, 2023). We believe that with a data-driven analysis
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of events, the public and policymakers have an important tool at hand to assess the success of saving

efforts and their policies.
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6. Do Wind Turbines Have Adverse Health Impacts?

6.1 Introduction1

Wind power is considered key in the transition towards net zero. About 100 GW of onshore capacity

– roughly 500,000 wind turbines – were built in Europe between 2011 and 2020 alone, satisfying

about 7% of Europe’s electricity demand as of 2020 (WindEurope, 2021). Wind power is expected

to contribute large shares to electricity supply in Europe (Child et al., 2019) and worldwide (IEA,

2021) by 2050, making it the most important renewable energy after solar.

Yet, wind power is not without controversy. Although its importance is generally acknowledged,

local residents often strongly oppose new wind turbines near their homes, a phenomenon referred to

as not-in-my-backyard effect which is seen as a major contributing factor behind the slow expansion

of wind power. In fact, negative impacts on house prices and the subjective wellbeing of nearby

residents have been documented (cf. Heintzelman and Tuttle, 2012; Gibbons, 2015; Dröes and

Koster, 2016; von Möllendorff and Welsch, 2017; Krekel and Zerrahn, 2017). Importantly, local

residents regularly cite concerns about adverse health impacts of wind turbines as one reason behind

their opposition, and these concerns have led to a heated debate about potential public health

consequences of living close to installations. In fact, Baxter, Morzaria, and Hirsch (2013) find that

health concerns are the strongest predictor for local resistance. However, systematic, causal evidence

on potential health externalities is scarce.

In this paper, we ask: do wind turbines have systematic, negative causal effects on the health of

nearby residents? If so, which health dimensions are affected and by how much? And are effects, if

any, spatially or temporally limited? To answer these questions, we use quasi-experimental methods

and representative longitudinal household data from Germany – a country with a fast expansion of

wind power in recent decades and hence a suitable case study – linked to a nationwide dataset on

wind turbines, based on precise geographical coordinates, covering the universe of almost 24,000

installations built in Germany between 2000 and 2017.

In theory, adverse health impacts of onshore wind turbines may be driven by several factors.2

First, and most important, there are concerns about the technology, with visual pollution from both

shadow flicker and night-time anti-aircraft lights, as well as noise pollution from both audible and

(especially) sub-audible (low-frequency or infra) sound as often cited mechanisms. Whether feared

or actually realised, these may result in worry, anxiety, and sleep disturbances, thereby resulting

in mental or physical health issues (cf. Bolin et al., 2011; Onakpoya et al., 2014; Freiberg et al.,

2019). Besides technological concerns, residents may feel overwhelmed and annoyed by not having

been involved in local planning and decision-making processes, aspects of fairness and procedural

justice (cf. Pohl, Gabriel, and Hübner, 2018; van Kamp and van den Berg, 2021; Ki et al., 2022).

Once installations have been built, they may feel disturbed by violations of their natural landscape

1Richard Layard, Ekaterina Oparina, Stefan Pichler, Michael Neugart, and Falk Laser are thanked for their comments
and suggestions on an earlier draft. Jonas Witte, Niall Maher, Isaac Parkes, and Marc Mosch are thanked for their excellent
research assistance. This work profited from the support of the Chair of International Economics at TU Darmstadt.

2For general reviews of wind turbine externalities, see Mattmann, Logar, and Brouwer (2016) or Zerrahn (2017).
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preferences or their psychological attachment to their places of residence (cf. Devine-Wright, 2005;

Jobert, Laborgne, and Mimler, 2007; Wolsink, 2007; Waldo, 2012).3 Each of these factors may

provoke negative emotional reactions and stress, leading to, if sufficiently strong, adverse health

impacts.

To provide systematic, causal evidence on such health externalities, we link the health outcomes

of household members to the nearest wind turbine based on precise geographical coordinates of

both households and installations. We measure general, mental, and physical health using the 12-

Item Short Form Survey (SF-12) (RAND, 2022), a routine instrument for monitoring health in the

general population. In addition, we measure self-assessed health and the number of doctor visits as

a retrospective behavioural outcome, as well as the frequency of experiencing negative emotions,

sleep satisfaction, and the number of hours of sleep as cited mechanisms behind potential health

problems. To estimate causal effects, we exploit the staggered rollout of installations over a two-

decade period in a spatial difference-in-differences design, using two-way fixed-effects estimators

and, in addition, the robust estimator by Sun and Abraham (2021) to explicitly account for potential

treatment effect heterogeneity due to changing technology over time (cf. Goodman-Bacon, 2021).4

Depending on outcome and treatment and control radii, our estimation samples include between 700

and 1,963 individuals who are treated by between 111 and 462 wind turbines, distributed across the

entire country, who are compared to a control group of between 8,002 and 10,533 individuals.5

We are the first to study the direct health effects of wind turbines using quasi-experimental

methods and nationwide data on households and installations that span over two decades, while

explicitly accounting for potential treatment effect heterogeneity due to changing technology over

time. We find no evidence of negative effects on either general, mental, or physical health – neither

on aggregate nor on any of the different mental or physical health sub-scales – in the SF-12. There

is no evidence for dynamic effects over time nor for cumulative effects. We do not detect impacts on

self-assessed health or the number of doctor visits either. When looking at often cited mechanisms

in the literature, we find no evidence that residents living closer to installations experience more

negative emotions, are less satisfied with their sleep, or sleep fewer hours than residents living

further away. In our baseline specification, we use a treatment group within 4,000 meters and a

control group between 4,000 and 8,000 meters to the nearest installation. Individuals within 4,000

meters are previously shown to experience negative externalities of wind turbines on their subjective

wellbeing (cf. Krekel and Zerrahn, 2017). Our results are robust to different treatment and control

radii as well as different bins around plants, to different plant sizes, and to accounting for residential

sorting. Taken together, our findings cast doubt on health externalities on the local population, which

has important implications for the public and scientific debate around wind power.

3A similar argument can be made for residents who hold lower environmental attitudes (Hobman and Ashworth, 2013),
who have less experience in and knowledge of renewables (Aitken, 2010), or who hold more conservative political beliefs
(Eltham, Harrison, and Allen, 2008; Karlstrom and Ryghaug, 2014).

4As an alternative to Sun and Abraham (2021), we also use the estimator by Gardner (2022) as a robustness check,
which confirms our results.

5An ex-post power calculation confirms that our study is sufficiently powered to detect a small effect size, if present.
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Suicide is an extreme outcome of mental distress (Harris and Barraclough, 1997), and has

been used as an objective measure of adverse mental health impacts of environmental stressors, for

example air pollution in the US (Molitor, Mullins, and White, 2023) or high temperatures in Mexico

and the US (Burke et al., 2018). The paper most closely related to ours is Zou (2020), who studies the

impact of wind turbines on suicides by exploiting administrative data on 800 new utility-scale wind

farms and official suicide rates at the county level in the US from 2001 to 2013. The author uses

a spatial difference-in-differences design and two-way fixed-effects estimators, finding significant

increases in suicides in counties closer to wind farms. However, impacts are small and detectable

only for individuals between 15 to 19 and for those over 80 years of age. Leveraging additional

survey data, the author shows that increases in suicides are likely driven by sleep insufficiency.6

Exploiting administrative data on suicide rates at the county level in Germany during our observation

period and replicating our analysis on health outcomes for suicides, we do not find evidence of effects

on suicides.

We contribute to a body of evidence that is – despite a clear, theoretical causal chain from

environmental stressor to health – largely inconclusive and that relies mostly on cross-sectional

analyses and local case studies.7 Most studies find that being located close to a wind turbine is

associated with increases in noise annoyance (Bakker et al., 2012; Michaud et al., 2016; Pohl,

Gabriel, and Hübner, 2018; Radun et al., 2022), health concerns (especially when installations are

visible) (Michaud et al., 2016), sleep disturbances (Bakker et al., 2012; Turunen et al., 2021; van

Kamp and van den Berg, 2021), and increases in psychological distress (Bakker et al., 2012), with

similar patterns across countries (Hübner et al., 2019). Besides issues of causality and a focus on

local case studies, a common concern with many of these studies is that they are often framed as or are

seemingly related to wind turbines, which may elicit attitude expression rather than the reporting of

genuine impacts. Given the quality of the evidence base, meta-analyses and systematic reviews are,

likewise, inconclusive (Bolin et al., 2011; Knopper and Olson, 2011), concluding that “experimental

and observational studies investigating the relationship between wind turbine noise and health are

warranted” (Onakpoya et al., 2014) and that “more high-quality research is needed” (Freiberg et al.,

2019). In a systematic review, J. H. Schmidt and Klokker (2014) find that exposure to wind turbines

increases the risk of annoyance and sleep disturbance, yet find no conclusive evidence of other

claimed health effects, noting that “selection bias and information bias of differing magnitudes were

found to be present in all current studies.” Given this inconclusive evidence base, the World Health

Organization, in its Environmental Noise Guidelines, takes a cautionary stance, and recommends

“reducing noise levels produced by wind turbines below 45 dB Lden [decibel day-evening-night-

6In a study not related to health, Brunner, Hoen, and Hyman (2022) use a spatial difference-in-differences design
that exploits the nationwide rollout of wind turbines in the US between 1995 and 2016. The authors estimate the causal
effects of wind turbines on test scores, high-school completion, and long-run outcomes of local students, finding precisely
estimated zero effects. Like our paper, the authors use both two-way fixed-effects estimators and the robust estimator by
Sun and Abraham (2021).

7There is also a proliferating grey and pseudo-scientific literature suggesting that proximity to wind turbines is causing
a wide range of health issues, from autism to cancer or even death. We limit our literature review to peer-reviewed articles.
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weighted sound pressure level], as wind turbine noise above this level is associated with adverse

health effects” and that “policy-makers implement suitable measures to reduce noise exposure [...]

above the guideline values”. However, it also acknowledges that the quality of evidence is “low” or

even entirely missing (WHO, 2018).

Interestingly, some studies point towards psychological salience, personality, and individual

differences to explain some of these findings. For example, Crichton and Petrie (2015) show

that concerns about adverse health impacts created by the media may trigger symptom reporting,

while Taylor et al. (2013) find perceived symptoms only amongst residents who score high in

terms of neuroticism, negative affect, and frustration intolerance. Similarly, Jalali et al. (2016)

find reported sleep disturbances only amongst residents who have negative attitudes towards wind

turbines, concerns about property devaluations, and who can see installations from their homes.

We also contribute to the literature in health, environmental, and public economics that looks

at the external effects of infrastructure, either directly on health and health-related quality of life,

such as freeways and associated congestion (Currie, Neidell, and Schmieder, 2009; Brinkman and

Lin, 2022) or shale gas development and fracking (Hill, 2018), or indirectly via noise pollution,

such as airports or neighborhood structure (Bilger and Carrieri, 2012; Boes, Nüesch, and Stillman,

2013); via air pollution such as industrial facilities, power plants, or heating and agricultural systems

(Agarwal, Banternghansa, and Bui, 2010; Luechinger, 2014; Currie, Davis, et al., 2015; Sheldon and

Sankaran, 2017; Fan, He, and Zhou, 2020), or the impacts of air quality on health and societal welfare

more generally (Currie, Neidell, and Schmieder, 2009; Muller, Mendelsohn, and Nordhaus, 2011;

Coneus and C. K. Spiess, 2012; Tanaka, 2015; Deryugina et al., 2019; Anderson, 2020; Giaccerini,

Kopinska, and Palma, 2021), and specifically, the societal benefits and costs of wind power (Cullen,

2013; Novan, 2015). Our paper adds a particular type of infrastructure – renewable energy facilities,

specifically wind turbines – that is being deployed in many countries at fast pace in close proximity

to households.

6.2 Data

6.2.1 Health

Our health data come from the German Socio-Economic Panel (SOEP), a representative panel of

private households in Germany (SOEP, 2021). It has been conducted annually since 1984 and

includes almost 40,000 individuals living in more than 19,000 households in its most recent 2022

wave. Importantly, the panel provides, besides interview dates, the exact geographical coordinates

of every household in every year since 2000, which allows us to merge the health outcomes of

individuals living in a representative sample of German households with data on wind turbines based

on precise geographical information and timing (Goebel, Grabka, et al., 2019).8

8The SOEP is subject to rigorous data protection: it is not possible to derive household data from geographical
coordinates as both are not visible to the researcher at the same time. See Goebel and Pauer (2014) for details.
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We select several health outcomes. Our main outcomes come from the 12-Item Short Form

Survey (SF-12) (RAND, 2022), which is incorporated into the SOEP every second year (i.e. 2000,

2002, 2004, ..., and so on). It includes summary scales for general health, mental health, and physical

health, alongside respective sub-scales.9 The SF-12 is a standard instrument on health-related quality

of life, allowing for group comparisons involving multiple health dimensions. It relies on self-

reporting and is widely used in healthcare for monitoring and assessment of health outcomes in

general and patient populations (Ware, Kosinski, and Keller, 1995). All scales from the SF-12 are

normalized to be between zero and 100, with a mean of 50 and a standard deviation of 10 (cf.

Andersen, Mühlbacher, and Nübling, 2007).

Moreover, we obtain data on the subjective self-assessed health of individuals and, as a

retrospective behavioral outcome, the reported number of doctor visits in the year prior to their

interview, both of which are asked every year. The former is obtained from a five-point Likert scale

question that asks “How would you describe your current health?”, with answers ranging from five

(“Very good”) to one (“Bad”). The latter is obtained from a question that asks “Have you gone

to a doctor within the last year? If yes, please state how often.” Finally, we obtain data on the

frequency of experiencing certain emotions, sleep satisfaction, and the number of hours of sleep to

look at often cited mechanisms through which adverse health impacts of wind turbines may come

about, in particular those related to noise pollution from both audible and (especially) sub-audible

(low-frequency or infra) sound.

Besides these outcomes, we select a wide range of demographic and socio-economic characteris-

tics as covariates, including marital status, employment status, log annual net household income, the

ownership status of the dwelling and its log annual rent, as well as the number of adults and children

in the household.10. Importantly, neither surveys nor questions are framed as being related to the

presence of wind turbines, so that priming of respondents is of no concern.

Appendix Table E.1 shows summary statistics for outcomes and covariates in our baseline

specification. Overall, individuals in our estimation sample are 71% married, 34% full-time and

12% part-time employed (with a median annual net household income of about €31,200), 4%

unemployed, 70% owning their dwelling and 30% renting, and have, on average, slightly less than

three individuals in their household.11 Individuals in our sample also tend to be rather healthy: for

our main outcomes based on the SF-12, individuals have mental and physical health scores above the

median of 50 (which can be interpreted as a cut-off for being healthier as opposed to unhealthier), and

they themselves assess their health as good (though not necessary very good). The median number

9For mental health, these are role-emotional and social functioning, which are defined as the extent to which individuals
are capable of mastering work or other daily and social activities without being affected by emotional problems, as well as
general mental health and vitality, which are defined as the absence of mental disorder and fatigue. For physical health,
these are role-physical and physical functioning as well as bodily pain. Each sub-scale is obtained from a five-point Likert
scale, whereby the respective summary scale combines these with equal weights.

10The SOEP asks renters to report their actual and owners to report their estimated rent in the hypothetical case in which
they would not own their dwelling. We combine both in a single variable.

11As described in Section 6.3.2, our sample is restricted to individuals living in rural areas (where wind turbines are
more common). Our results are robust to lifting this restriction.
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of doctor visits in the last year is four. Note that the divergence between mean and median for some

of our health outcomes suggests that there is a longer tail of individuals who have below-average

health.

6.2.2 Wind Turbines

Our data on wind turbines come from Unnewehr et al. (2021) and include all 23,628 onshore

wind turbines connected to the grid in Germany from 2000 to the end of 2017. In particular, the

data contain information on the exact location of each installation in form of precise geographical

coordinates, the starting year of operation, and further details such as hub height, rotor diameter, and

installed capacity in GW.

The exact location of each installation is essential for our analysis, and we carried out extensive

plausibility checks to ensure high data quality. In particular, we drew a 10% random sample of

wind turbines and then verified the location of each randomly drawn installation based on satellite

imagery from Google Earth. We found that about 95% of installations had the correct geographical

coordinates.12 We conclude that our data on wind turbines are of high quality.

Based on our data, Figure 6.1 shows the diffusion of onshore wind turbines in Germany until

2017. In particular, Panel A shows the geographical distribution of wind turbines at the level of

counties (NUTS-3 areas) in Germany, whereby counties colored in darker shades of red exhibit more

installations. We observe that 327 out of 401 counties had installations by the end of 2017. Most can

be found in the north of Germany, near the sea where wind intensity tends to be highest, especially

in the federal states of Lower Saxony, Mecklenburg-Western Pomerania, and Schleswig-Holstein,

which are adjacent to the North Sea, as well as to a lesser extent in the federal states of Brandenburg

and Saxony-Anhalt, which are landlocked yet still in the north of the country.

Panel B shows, as an example, the exact location of each wind turbine in the federal state of

Schleswig-Holstein, whereby installations that are older are colored in yellow, and those that are

newer are colored in blue. In total, there were 3,310 installations in Schleswig-Holstein at the end of

2017.13

Finally, Panel C plots the annual number of cumulative and new installations in Germany since

1990. While new builds increased in the 1990s, their number peaked in 2002, two years after the

German Renewable Energy Sources Act established an attractive feed-in-tariff system for electricity

generated from wind power. After fewer new builds in 2008 and an increase in the following years,

the number of new builds per year remained roughly stable at around 1,500 between 2013 and 2017.

Our analysis focuses on the period between 2000 and 2017, for which the SOEP provides the precise

geographical coordinates of every household in every year.

12More specifically, 93.9% of the random draw had exactly the same geographical coordinates as in Google Earth. For
1.4% of the draw, the geographical coordinates were almost the same. For the rest, we found that 2.8% of installations no
longer existed, while 1.6% could not be found, 0.1% were under construction, and 0.25% came with similar geographical
coordinates as another installation nearby.

13Appendix Figure E.1 shows the exact locations of all 27,739 onshore wind turbines connected to the grid in Germany
through the end of 2017.
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Panel A shows the geographical distribution of wind turbines across counties (NUTS-3 areas: Landkreise und
Kreisfreie Städte) in Germany in 2017. The thick black lines indicate the borders of federal states (NUTS-1
regions), whereas the thick red line indicates the border of the federal state of Schleswig-Holstein, the most
northern German state. Panel B is a close-up of Schleswig-Holstein and shows, as an example, the exact
location of each installation in that federal state, whereby each dot indicates one installation, colored by the
first year of operation. Panel C plots the annual number of cumulative and new installations in Germany since
1990.

Figure 6.1: Diffusion of Onshore Wind Turbines in Germany until 2017.

Appendix Table E.2 shows summary statistics for wind turbines in our baseline specification. On

average, wind turbines have a power capacity of 1.6 GW (standard deviation of 0.8), a hub height of

88.4 meters (standard deviation of 32.2), and a rotor diameter of 76.2 meters (standard deviation of

23.3). Appendix Table E.3 then shows how these summary statistics have evolved over time during

our observation period: capacity has almost doubled, from 1.3 GW in 2002 to 2.4 in 2015, and so

have hub height (from 75.7 meters in 2002 to 122.1 in 2015) and rotor diameter (from 64.2 meters

to 112.2).
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6.2.3 Estimation Sample

Our estimation sample consists of all individuals who are interviewed from 2000 through 2017 (for

whom we have precise geographical coordinates), who have at least one pre-treatment and one post-

treatment observation, and who have no missings on either outcomes or covariates. The number of

observations in our estimation sample depends on the availability of outcomes in a given year (some

are available every year, others only every second) and on our treatment and control radii.

In our baseline specification, which uses a treatment group within 4,000 meters and a control

group between 4,000 and 8,000 meters to the nearest installation, we have 700 individuals in our

treatment group and 8,002 individuals in our control group for our main outcomes based on the SF-

12, being treated by 111 wind turbines. For self-assessed health and the number of doctor visits,

this amounts to 1,510 individuals in our treatment group and 10,533 individuals in our control group

being treated by 399 wind turbines. For a treatment group within 6,000 meters, we have 902 treated

and 8,002 controlled individuals for our main outcomes, being treated by 116 wind turbines. For

self-assessed health and the number of doctor visits, there are 1,963 treated and 10,533 controlled

individuals, being treated by 462 wind turbines.

To ascertain whether our study is sufficiently powered to detect a small effect size, we conduct an

ex-post power calculation. In particular, we assume a small effect size of d = 0.2, an error probability

of α = 0.05, and a power of 1−β = 0.95. This yields a required total sample size of 1,084 individuals,

with 542 individuals in the treatment group and in the control group. As our group sizes exceed this

threshold for each of our outcomes, we conclude that our study is sufficiently powered to detect a

small effect size, if present.

6.3 Empirical Strategy

6.3.1 Model

Our empirical strategy rests on a spatial difference-in-differences design that compares the health

outcomes of individuals living in households near wind turbines with those of individuals living

further away, from before to after the start date of operation. We begin with the following regression

model:

Yi jd,t = β0 + β1(1{Near}i jd × 1{Operating}i j,t) + β21{Near}i jd + β31{Operating}i j,t

+ β′4Xi jd,t + r + s + t + s × t + ui + ϵi jd,t
(6.1)

where Yi jd,t is the health outcome of individual i in year t, given the nearest installation j and its

distance d to the household of the individual. The indicator 1{Near}i jd is a time-invariant dummy

that takes on one if the household is located within distance band [0; d] meters to the installation

(i.e. our treatment group), and zero if it is located within distance band (d; x] meters (i.e. our control

95



6. Do Wind Turbines Have Adverse Health Impacts?

group, whereby x > d). That is, individuals in our control group are located close to an installation

but not close enough to be treated. The indicator 1{Operating}i j,t is a time-varying dummy that

takes on one if the installation is operational in a given year and zero else.14 The vector Xi jd,t are

time-varying covariates, including demographic and socio-economic characteristics. The variables

r, s, and t are county, federal state, and year fixed effects,15 whereas ui is an individual fixed effect.

Together, r, s, t, and ui net out time-invariant unobserved heterogeneity at the county, federal state,

year, and individual level. We also include interactions between federal state and year fixed effects

to flexibly account for trends in health across federal states over time. Because plants determine

treatment, we cluster robust standard errors at the plant level.

Equation 6.1 implements our spatial difference-in-differences design as a two-way fixed-effects

estimator, generalizing the canonical difference-in-differences design to treatment at multiple points

in time.16 Noting that 1{Near}i jd and ui as well as 1{Operating}i j,t and t are collinear, and defining

Di jd,t = (1{Near}i jd × 1{Operating}i j,t), Equation 6.1 can be rewritten as:

Yi jd,t = β0 + β1Di jd,t + β
′
2Xi jd,t + r + s + t + s × t + ui + ϵi jd,t (6.2)

As we are also interested in whether individuals adapt to nearby installations or whether

continued exposure potentially aggravates adverse health impacts, we also estimate this model as

an event study:

Yi jd,t = β0 +
∑︂

l

βl
1Dl

i jd,t + β
′
2Xi jd,t + r + s + t + s × t + ui + ϵi jd,t (6.3)

where Dl
i jd,t is a set of dummies that take on one for the lth lead before (i.e. from l = −6 to l = −1)

or lag after construction (i.e. from l = 0 to l = 8), and zero otherwise.17

We are interested in β1 in Equation 6.2 and βl
1 in Equation 6.3, which can be interpreted as the

average causal effects on health from being located within distance band [0; d] meters to the nearest

wind turbine if our identifying assumptions in Section 6.3.2 are satisfied.

14We use the start date of operation to define our time dummy, as adverse health impacts are mostly attributed to the
operation rather than construction of installations. Note that the construction (excluding planning and project management)
of a wind turbine is rather fast: for example, it only takes about two months to build a smaller, ten GW wind farm and about
six months for a larger, 50 GW farm, each comprising several wind turbines (EWEA, 2023). As Figure 6.2 shows, we find
no evidence for anticipation effects (adverse health effects prior to treatment) that could be attributed to construction.

15In Germany, there are 401 counties (NUTS-3 areas) and 16 federal states (NUTS-1 regions).
16This closely resembles the model by Currie, Davis, et al. (2015) for estimating the causal effect of toxic plant closings

on health, the main difference being that our model takes the level of analysis from the aggregate to the individual level.
17We normalize the year of first treatment as t = 0 and use the pre-treatment year t = −1 as the reference category in

our regression. Note that, due to sample size i.e., a small number of individuals many years before and many years after
treatment, we trim observations before the sixth lead and after the eighth lag.
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6.3.1.1 Treatment Effect Heterogeneity

de Chaisemartin and D’Haultfœuille (2020), Callaway and Sant’Anna (2021), Goodman-Bacon

(2021), Sun and Abraham (2021), Athey and Imbens (2022), and Borusyak, Jaravel, and J. Spiess

(2023) show that Equations 6.2 and 6.3 yield unbiased estimates of β1 and βl
1 only if treatment

effects are homogeneous.18 This may not be true in our case: we exploit the staggered rollout of

installations over a two-decade period during which technology may have changed. In fact, Appendix

Table E.3 shows that capacity, as well as hub height and rotor diameter of wind turbines, almost

doubled between 2002 and 2015, suggesting that treatment effects may be heterogeneous during our

observation period.

In essence, Equations 6.2 and 6.3 may yield biased estimates of β1 and βl
1 as they compare

individuals who are being treated at the time not only to those who are later treated or who are never

treated but also to those who were earlier treated.19 However, individuals who were earlier treated

may have been exposed to a different technology, resulting in, for example, different trajectories of

adaptation to nearby installations. The direction of potential bias is not ex-ante clear.20

To eliminate potential bias, we adopt the robust estimator by Sun and Abraham (2021) for

difference-in-differences with treatment at multiple points in time, which formalizes this setting as

an event study. This approach has several advantages in our case: first, it allows us to show an

unbiased common trend between treated and controlled pre-treatment, by looking at leads, as well as

an unbiased trajectory of adaptation to nearby installations post-treatment, by looking at lags. We can

then aggregate lags into a single parameter to obtain an unbiased average effect. Second, it allows us

to elicit the extent of bias arising from treatment effect heterogeneity, by directly comparing estimates

from our two-way fixed-effects estimator in Equation 6.3 with those from Sun and Abraham (2021),

which is a contribution in its own right.

Sun and Abraham (2021) use cohort-specific average treatment effects on the treated as building

blocks, which in our case can be defined as CATTe,l = E[Y1
i jd,e+l − Y0

i jd,e+l|Ei jd = e], where Ei jd =

min{t : Di jd,t = 1} is the year of first treatment, individuals in cohort e ∈ {1, 2, ...T,∞} are first treated

in year {i : Ei jd = e} (with ∞ denoting cohorts that are never treated), and Y1
i jd,e+l and Y0

i jd,e+l are

potential outcomes of treatment and control group, respectively.21 Hence, CATTe,l is the average

treatment effect l periods relative to the year of first treatment for the cohort of individuals who are

first treated in year e. The authors show that, for a non-empty cohort e, some pre-periods s < e, and

some set of non-empty control cohorts C ⊆ {c : e + l < c ≤ T }, an estimate δ̂e,l of CATTe,l can be

obtained from:
18See also de Chaisemartin and D’Haultfœuille (2022) and J. Roth et al. (2023) for recent reviews of this issue.
19Individuals who are always treated are generally excluded, as they do not allow for inference.
20Accounting for potential treatment effect heterogeneity over time, we also look at heterogeneous treatment effects by

plant size in Section 6.5.
21The data structure of our event study can be described as hybrid (Miller, 2022), considering that treatment occurs at

multiple points in time and that it includes both individuals who are later treated and individuals who are never treated.
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δ̂e,l =
1
N
∑︁N

i=1(Yi jd,e+l − Yi jd,s) × 1{Ei jd = e}
1
N
∑︁N

i=1 1{Ei jd = e}
−

1
N
∑︁N

i=1(Yi jd,e+l − Yi jd,s) × 1{Ei jd ∈ C}

1
N
∑︁N

i=1 1{Ei jd ∈ C}
(6.4)

Then, estimates of the lth lead before or lag after construction, β̂l
1, can be calculated as weighted

averages of δ̂e,l using estimated weights PR̂{Ei jd = e|Ei jd ∈ [−l,T − l]}, which are obtained from

sample shares of each cohort in relevant periods l:

β̂
l
1 =
∑︂

l

∑︂
e

δ̂e,lPR̂{Ei jd = e|Ei jd ∈ [−l,T − l]} (6.5)

Finally, an overall estimate, β̂1, can be calculated as the average across all lags after construction.

Sun and Abraham (2021) show that, if our identifying assumptions in Section 6.3.2 are satisfied, δ̂e,l
is a consistent estimate of CATTe,l and sample shares PR̂{Ei jd = e|Ei jd ∈ [−l,T − l]} are consistent

estimates of population shares, implying that β̂l
1 and β̂1 are consistent estimates even if treatment

effects are heterogeneous.

Note that, regardless of our estimator, we assume that treatment is an absorbing state, i.e. once a

wind turbine becomes operational, it remains so until the end of our observation period.22

Appendix Figure E.2, Panel A, shows the number of individuals who are treated by year in our

estimation sample; Panel B the number of individuals who are never treated, exemplary for our

outcome self-assessed health, which is available in every year. Appendix Figure E.3 replicates this

figure for general health in the SF-12, which is available every second year. As seen in both cases, the

number of individuals who are treated is almost constant during our observation period, except for a

slight increase in 2016 and a much stronger increase around 2002, when the feed-in-tariff system for

electricity generated from wind power was established in Germany. In line with this, Panel C shows

the cumulative density of individuals who are treated by year, with a much steeper increase during

the first years of our observation period. Finally, Appendix Figure E.4 shows the share of individuals

who are treated by one, two, or more newly built wind turbines. Most are treated by one turbine or

wind farms with less than five turbines.

6.3.2 Identification

We choose our control group to be close enough to installation j to capture highly localized

area conditions such as local demography, labor markets, deprivation, or health clusters in its

surroundings, yet far enough not to be treated.
22Our data on wind turbines do not include the date of decommissioning, if applicable. However, the average lifespan

of a wind turbine is 20 years (EPA, 2013). Decommission is, therefore, likely to be a minor issue during our observation
period. In any case, it is likely to bind our treatment effects from below. The same is true if wind turbines are taken off-grid
for maintenance or repair (which usually takes only very short time).
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As there exists no uniform legislation in Germany that could serve as a point of refer-

ence (like a mandated setback distance), we are agnostic and use different treatment radii,

i.e. d = {2000, 3000, 4000, 5000, 6000}, as well as different control radii, i.e. x =

{4500, 5000, 5500, 6000, 8000, 10000}. A treatment radius of d = 4000 and a control radius of

x = 8000 are our default, as individuals within 4,000 meters are previously shown to experience

negative externalities of wind turbines on their subjective wellbeing (cf. Krekel and Zerrahn, 2017).

This is a common approach in the literature (cf. Gibbons, 2015; Krekel and Zerrahn, 2017), in case a

treatment radius cannot be endogenously determined, for example by estimating how far a pollutant

travels (cf. Currie, Davis, et al., 2015). It also allows us to test for spatial decay of potential wind

turbine externalities on health.

Left with these treatment and control group definitions, our empirical strategy rests on two

identifying assumptions:

1. Exogeneity of Treatment. Whether an individual is allocated to our treatment or control

group is as good as random, conditional on time-varying covariates Xi jd,t, county and federal

state fixed effects r and s, year fixed effects t, and individual fixed effects ui. That is,

Di jd,t⊥0, 1|Xi jd,t, r, s, t, ui. This also implies no anticipatory behavior prior to treatment.

2. Common Trend. In a hypothetical absence of treatment, our treatment group would have

followed the same trend in health outcomes as our control group, conditional on time-

varying covariates Xi jd,t, county and federal state fixed effects r and s, year fixed effects

t, and individual fixed effects ui. That is, E[Yi jd,t − Yi jd,t−1|Xi jd,t, r, s, t, ui,Di jd,t = 1] =

E[Yi jd,t − Yi jd,t−1|Xi jd,t, r, s, t, ui,Di jd,t = 0].

Regarding homogeneity of treatment, Appendix Table E.4 shows means and variances of our

covariates separately for our default treatment and control group, including normalized differences

between them. According to Imbens and Wooldridge (2009), a normalized difference greater than

0.25 suggests covariate imbalance. As seen, none of our covariates exceeds this value, implying that

they are well-balanced between groups. Note that not controlling for time-varying covariates, county

and federal state fixed effects, year fixed effects, and individual fixed effects in our regressions does

not change our results (Appendix Figures E.5 and E.6). This suggests that exogeneity of treatment is

likely satisfied, even unconditionally. As Figure 6.2 shows, we do not find evidence for anticipatory

behavior prior to treatment.

Regarding common trend, we plot leads before the year of first treatment in our event studies, for

our two-way fixed-effects estimator and for the robust estimator by Sun and Abraham (2021). As will

be seen, none of these leads turns out significantly different from zero in our baseline specification,

suggesting common trend behavior between treated and controlled pre-treatment.

A threat to identification may come from endogenous sorting. In particular, some individuals

may be more likely to move away from wind turbines, for example because they are concerned about

adverse health impacts or are experiencing them. Other individuals, however, may move towards
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wind turbines, where rental prices may be lower, potentially mispredicting adverse health impacts or

even deliberately taking them into account. The direction of resulting bias is not ex-ante clear. Thus,

in our baseline specification, we omit individuals who move and focus entirely on stayers.23 Note

that mobility in Germany is rather low compared to other countries: in the SOEP, only about 5% of

individuals move every year.

Another threat to identification may come from endogenous construction. In particular, some

individuals may be more likely to have wind turbines constructed nearby, while others may even

construct installations themselves. For example, wind turbines may be more likely to be placed in

deprived areas, where local resistance may be lower. On the other hand, private persons may be

generating income from wind turbines, for example farmers who build a wind farm on their land or

who lease their land to utilities to do so. To the extent that endogenous construction is correlated

with health, as is found for deprivation and income (cf. Frijters, Haisken-DeNew, and Shields, 2005;

Lindahl, 2005; Jones and Wildman, 2008), it may bias our estimates, the direction of which is again

not ex-ante clear.

We deal with endogenous construction in three ways. First, recall that our control group is located

within distance band (d; x] meters to the nearest installation hence far enough not to be treated but

close enough to capture highly localized area conditions such as deprivation and income. Second,

we use different treatment and control radii d and x to capture different aspects of these conditions.

Additionally, we control for county fixed effects r to capture localized area conditions such as local

attitudes (as well as federal state fixed effects s and their interaction with years to capture regional

socio-political conditions and their trends over time). Finally, we exclude farmers and urban counties,

so that our estimation sample is restricted to a relatively homogeneous group of individuals living in

rural areas.24

6.4 Results

We first look at average treatment effects. Table 6.1 shows the estimates from our baseline

specification, which compares the health outcomes of individuals who are treated (i.e. living within

4,000 meters to the nearest newly built wind turbine) with those who are not (i.e. living between

4,000 and 8,000 meters). Panel A shows the estimates from our two-way fixed-effects estimator,

Panel B those from the robust estimator by Sun and Abraham (2021). All models routinely control

for time-varying covariates, county fixed effects, federal state times year fixed effects, and individual

fixed effects. We standardized outcomes to have a mean of zero and a standard deviation of one (i.e.

z-scores) for comparability.

We do not find a statistically significant effect of a newly built wind turbine on either the mental

or physical health summary scale (Columns 2 and 3 in each panel), our main outcomes from the

23In a robustness check in Section 6.5, we return to the issue of endogenous sorting. As will be seen, our results remain
robust to the inclusion of movers (Appendix Table E.5).

24Our results do not change when including urban counties (Appendix Figure E.7).

100



6.4 Results

SF-12. If anything, we detect a positive effect on general health as an overall measure of health

(Column 1). However, it is only small in size (about 6% SD), significant at the 5% level (i.e. P value

of about 0.04 for each estimator), and should be de-emphasized due to the number of hypotheses

we are testing. In particular, considering that we are testing five hypotheses, a standard Bonferroni

correction suggests a critical value of (0.10/5) = 0.02 for a 10% level of statistical significance,

which is clearly below our empirical P value. Going on, we do not find a statistically significant

effect on self-assessed health (Column 4) or on the reported number of doctor visits (Column 5),

a retrospective behavioral outcome that allows us to capture potential impacts that go beyond self-

assessment. Estimates from our two-way fixed-effects estimator generally resemble those from the

robust estimator by Sun and Abraham (2021).

Appendix Tables E.6 and E.7 disentangle the mental and physical health summary scales from

the SF-12 into their respective sub-scales, which are role-emotional and social functioning, general

mental health, and vitality for the mental health summary scale, and role-physical and physical

functioning as well as bodily pain for the physical health summary scale. In line with our previous

results, we do not find a statistically significant effect of a newly built wind turbine on any of these

sub-scales.
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Table 6.1: Average Treatment Effects.

(a) Two-Way Fixed-Effects Estimator.

SF-12 Health Survey Other Health Outcomes

Dependent Variable: General Health Mental Health Summary Scale Physical Health Summary Scale Self-Assessed Health Doctor Visits

(1) (2) (3) (4) (5)

Variable

Treated 0-4 km 0.06∗∗ 0.009 -0.002 0.01 0.02

(0.03) (0.03) (0.03) (0.02) (0.02)

Controls Yes Yes Yes Yes Yes

Fixed-effects

Individual Yes Yes Yes Yes Yes

County Yes Yes Yes Yes Yes

State-Year Yes Yes Yes Yes Yes

Statistics

Adjusted R2 0.591 0.484 0.668 0.601 0.357

Obs. 26,903 26,903 26,903 68,289 65,068

N treated 700 700 700 1,509 1,508

N never treated 8,002 8,002 8,002 10,533 8,767

(b) Robust Estimator by Sun and Abraham (2021).

SF-12 Health Survey Other Health Outcomes

Dependent Variable: General Health Mental Health Summary Scale Physical Health Summary Scale Self-Assessed Health Doctor Visits

(1) (2) (3) (4) (5)

Variable

Treated 0-4 km 0.07∗∗ -0.007 0.0009 0.02 0.03

(0.03) (0.04) (0.03) (0.02) (0.02)

Controls Yes Yes Yes Yes Yes

Fixed-effects

Individual Yes Yes Yes Yes Yes

County Yes Yes Yes Yes Yes

State-Year Yes Yes Yes Yes Yes

Statistics

Adjusted R2 0.591 0.485 0.668 0.601 0.357

Obs. 26,903 26,903 26,903 68,289 65,068

N treated 700 700 700 1,509 1,508

N never treated 8,002 8,002 8,002 10,533 8,767

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1; clustered (plant) standard-errors in parentheses; treatment group 0-4 km; control group 4-8 km.
Outcomes in z-scores; more indicates better health (but for doctoral visits more indicates worse).

Next, we move from static to dynamic effects and look at treatment over time. Figure 6.2 shows

the estimates from our baseline specification implemented as an event study, with six leads before

and eight lags after a new wind turbine is built, whereby the period in which an installation is built is

normalized to zero and the first lead serves as the reference category. Panels A to E plot these leads

and lags for each of our outcomes in Table 6.1. The remainder is the same as before.

A visual inspection of the leads indicates no difference in time trends between our treatment and

control groups in any of the panels, suggesting common trend behavior pre-treatment.

102



6.4 Results

Wind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installed−0.2

0.0

0.2

−5 0 5

Years since installation

E
st

im
at

e 
an

d 
95

%
 C

on
f. 

In
t.

General HealthA

−0.2

0.0

0.2

−5 0 5

Years since installation

E
st

im
at

e 
an

d 
95

%
 C

on
f. 

In
t.

Mental HealthB

−0.2

0.0

0.2

−5 0 5

Years since installation

E
st

im
at

e 
an

d 
95

%
 C

on
f. 

In
t.

Physical HealthC

−0.2

0.0

0.2

−5 0 5

Years since installation

E
st

im
at

e 
an

d 
95

%
 C

on
f. 

In
t.

Health StatusD

−0.2

0.0

0.2

−5 0 5

Years since installation

E
st

im
at

e 
an

d 
95

%
 C

on
f. 

In
t.

Doctor VisitsE

Sun and Abraham
TWFE

Estimation approach

Outcomes are in z-scores. Higher values indicate better health (but for doctor visits higher indicates worse)

Figure 6.2: Dynamic average treatment effects for two-way fixed-effects estimator and robust estimator
by Sun and Abraham (2021). Difference in health outcomes between individuals living nearby a newly
built wind turbine (i.e. within 4,000 meters) and individuals further away (i.e. between 4,000 and 8,000
meters).

Again, we do not find a statistically significant effect of a newly built wind turbine on either the

mental or physical health summary scales from the SF-12, neither for any lead nor for any lag. We

also do not find a consistent effect on self-assessed health or on the reported number of doctor visits.

We observe that the small, positive effect on general health is only significant in the year in which

a new wind turbine is built (i.e. P value of about 0.02 for each estimator), with no evidence of a

lasting positive effect on general health. Considering that we are testing 15 hypotheses (i.e. six leads

and eight lags), a standard Bonferroni correction suggests a critical value of (0.10/15) = 0.007 for

a 10% level of statistical significance, which is again below our empirical P value. Estimates from

our two-way fixed-effects estimator once more resemble those from the robust estimator by Sun and

Abraham (2021).

It could be the case that potential effects only emerge from more than one turbine. Appendix

Figure E.8 replicates Figure 6.2 for different treatment intensities, i.e. being treated by one, two
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to five, or more than five wind turbines, using the robust estimator by Sun and Abraham (2021),

to capture potential cumulative impacts, for example by wind farms. As before, we do not find

a statistically significant effect of one or several newly built wind turbines on any of our health

outcomes.25

Perhaps effects only manifest themselves for different age groups. Appendix Figure E.9

replicates Figure 6.2 for different age groups, defined as younger (between 18 and 40 years), middle-

aged (between 41 and 59 years), and older (from 60 years of age onwards). Again, we do not detect

consistent impacts on any of these age groups for any of our outcomes.

Although we are unable to detect impacts on our health outcomes, there may still be externalities

from newly built wind turbines, though perhaps not sufficiently strong to manifest themselves

in adverse health impacts. Because noise annoyances and sleep disturbances are often cited as

mechanisms through which adverse health impacts may come about, we also look at the frequency

of experiencing certain emotions (i.e. happiness, sadness, anxiety, and anger) as well as sleep

satisfaction and the number of hours of sleep on a normal weekday and a normal weekend day

as additional outcomes.26

Appendix Figure E.10 replicates Figure 6.2 for these additional outcomes. As seen, we again

do not find consistent evidence of systematic, statistically significant effects on either happiness,

sadness, anxiety, or anger, nor on the number of hours respondents report to sleep or their sleep

satisfaction.

6.5 Robustness

We conduct a series of tests to investigate the robustness of our results. If not stated otherwise,

estimates are based on the robust estimator by Sun and Abraham (2021), a treatment group that

lives within 4,000 meters to the nearest newly built wind turbine, and a control group that lives

between 4,000 and 8,000 meters, i.e. our baseline specification.27 For consistency, we conduct each

robustness check for each of our health outcomes.
25There is indication for a temporal effect on doctor visits from 2-5 turbines but in this case the common trend

assumption does not hold.
26The frequency of experiencing certain emotions is obtained from a five-point Likert scale question that asks “Please

indicate for each feeling how often or rarely you experienced this feeling in the last four weeks: angry, worried, happy, and
sad”, with answers including one (“Very rarely”), two (“Rarely”), three (“Occasionally”), four (“Often”), and five (“Very
often”). Moreover, sleep satisfaction is obtained from an eleven-point Likert scale question that asks “How satisfied are
you with your sleep?”, with answers ranging from zero (“Completely dissatisfied”) to ten (“Completely satisfied”). Finally,
the number of hours of sleep is obtained from free-text questions that ask “How many hours do you sleep on average on a
normal day during the working week? How many hours on a normal weekend day?”.

27We also implemented the two-stage difference-in-differences framework by Gardner (2022) and Gardner and Butts
(2022) as an alternative to Sun and Abraham (2021). In essence, this framework identifies group and period effects in a
first stage from the sample of untreated observations, then, in the second stage, it identifies treatment effects by comparing
treated and untreated outcomes after removing these group and period effects. We obtain qualitatively similar results using
this framework (Appendix Figure E.11).
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We first look at our standard errors, which, in our baseline specification, are clustered at the plant

level, where randomization takes place. Appendix Table E.5 Column 1 shows that clustering our

standard errors at the level of households, i.e. at a lower, and hence, less conservative level, does

not change our results.28 Next, we look at endogenous sorting. Recall that we focused on stayers

in our baseline specification as movers may move towards or away from installations, depending on

preferences, potentially biasing our estimates. Movers may also bias our estimates because moving

itself may have health effects. Column 2, however, shows that including movers leaves our results

unchanged, suggesting that endogenous sorting is, if anything, only a minor concern. Also recall

that we trim observations before the sixth lead and after the eighth lag in our baseline specification,

as these are only identified by few observations. We now include these observations in Column 3,

thus also capturing potential effects that may occur many years after a new wind turbine was built.

As shown, there is no evidence for such effects as our results remain unchanged. Finally, in Columns

4 and 5, we split our estimation sample into the years before and after 2010, i.e. the years in which

wind power was still relatively novel and later years, whereas in Columns 6 and 7, we differentiate

small from large plants, i.e. plants with a hub height below 100 meters from those with a hub height

above. Especially for the latter, a potential concern could be that for a given treatment and control

radius, plants with a higher hub height may contaminate our control group, thereby reducing our

treatment effect. Focusing on smaller plants should mitigate such concerns.29 As shown, there are

no statistically significant treatment effects (at the 5% level) across Columns 4 to 7.30

Next, we look at whether modifying our control group changes our results. What if individuals

in our control group living close to an installation (but just outside our treatment radius) are also,

though minorly, affected by its presence? To answer this question, in Appendix Figure E.14, we

narrow our control group to individuals living in 500-meter bins between 4,000 and 6,000 meters

to the nearest newly built wind turbine. As before, we do not find consistent evidence of adverse

health impacts across bins. In Figure E.15, we then further adjust our control group, by selectively

including individuals living further away, as it could be the case that adverse health impacts (for

example, due to low-frequency noise emissions) may manifest themselves only at distances greater

than 4,000 meters. As before, we find no consistent evidence of such impacts.

Next, we change our treatment radius. Although a treatment radius of 4,000 meters in our

baseline specification seems reasonable, and is shown to capture negative externalities of newly

built wind turbines on the subjective wellbeing of nearby residents (cf. Krekel and Zerrahn, 2017),

we vary our treatment radius in Figure E.16. As seen, we also do not find systematic evidence of

adverse health impacts at 2,000, 3,000, or 6,000 meters. There is some evidence of a higher number

of reported doctor visits two, three, and four years after a new wind turbine was built at a distance of

28Clustering our standard errors at the plant times year level does not change our results either (Appendix Figure E.12).
29In another robustness check, we additionally controlled for hub height, which left our results unchanged (Appendix

Figure E.6).
30Appendix Figure E.13 shows dynamic treatment effects over time when splitting our estimation sample into the years

before and after 2010. Again, we find no consistent evidence of adverse health impacts for any lag after a new wind turbine
was built.
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2,000 meters, but in this case we also observe a potential violation of the common trend assumption

prior to treatment. Note that, for a distance of 2,000 meters, the size of the treatment group drops:

here, we only observe 318 individuals in our treatment group for our bi-annual health outcomes (i.e.

the SF-12) and 584 for our annual outcomes (i.e. self-assessed health and the reported number of

doctor visits).

Finally, Appendix Figure E.5 shows that excluding and including various fixed effects (i.e.

individual, year, county and federal state, and their interactions) does not change our results; results

also do not change with the inclusion of fixed effects for different distance bins around newly built

wind turbines (e.g. a fixed effect for all households that are located within 1,000 meters to the nearest

installation, another for all households that are located within 1,000-2,000 meters, and so on).

6.6 Additional Analysis: Suicides

We move on to an alternative approach for measuring potential adverse health impacts of wind

turbines. In particular, we use suicide rates as an objective measure of adverse mental health impacts,

as has been used for air pollution in the US (Molitor, Mullins, and White, 2023) or high temperatures

in the US and Mexico (Burke et al., 2018). The advantage of information on suicides is that it relies

on administrative records as opposed to self-reports and that it is consistently measured across a

population over time. In doing so, we follow Zou (2020), who exploits administrative data on 800

wind farms and suicides at the county level in the US from 2001 to 2013 in a spatial difference-

in-differences design and two-way fixed-effects estimators. The author finds significant increases in

suicide rates in counties closer to wind farms. In what follows, we replicate our analysis for annual

suicides per million population in the 401 counties in Germany. The Statistical Offices of the German

federal states provided us with the data.

We control for covariates shown in Appendix Table E.8. These include unemployment per capita,

GDP per capita, and the average age, which are obtained from INKAR (2023).31 Further, we include

county and federal state times year fixed effects.32

Table 6.2 Column 1 shows our baseline results using the robust estimator by Sun and Abraham

(2021). It shows differences in suicides per million population between treated counties (those with

31Appendix Table E.9 shows normalized differences between treated and never-treated counties. Note that we are not
particularly concerned about differences greater than 0.25 for GDP per capita as our county fixed effects account for GDP
imbalances which should mainly be time-invariant. We also control for the log-transformed level of suicides, lagged by 10
years. As we trim our data to observations with six leads before and eight lags after a new wind turbine was built, we only
include lagged suicide information before treatment.

32County fixed effects capture time-invariant county-specific determinants of suicides, whereas federal state times year
fixed effects control for characteristics that vary on the state level and change over time, for example changes in the health
care system.
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at least one new wind turbine) versus untreated counties (those with no wind turbines).33 In our

baseline specification, we focus on non-urban counties as wind turbines are mainly installed there.34

We observe no statistically significant differences in suicides between treated and untreated counties.

Table 6.2: Wind turbines on suicides.

Treatment At least one turbine Ten or more turbines 0.1 or more turbines per sqkm

Dependent Variable: Suicides per million population
(1) (2) (3)

Variable
ATT 0.49 0.41 1.5

(1.1) (1.3) (1.6)
Controls Yes Yes Yes

Fixed-effects
County Yes Yes Yes
State-Year Yes Yes Yes

Statistics
Adjusted R2 0.959 0.929 0.940
Observations 1,190 2,843 6,273
N treated 73 126 71
N never treated 20 136 324

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1; clustered (county) standard-errors in parentheses;
Controls are GDP per capita, unemployment rate, average age and the log of number of suicides lagged by 10
years.
In column (1), we focus on non-urban areas only and neglect counties with a turbine installed in 2000.
In column (2), we neglect observations with between 1 and 9 turbines and those with 10 or more turbines in 2000.
In column (3), we neglect counties with more than 0.1 turbines per sqkm in 2000.
In column (3), we also neglect observations between 0.075 and 0.1 turbines per sqkm.

Next, we move to dynamic effects and look at treatment over time. Appendix Figure E.19,

Panel A, shows the estimates from our baseline specification implemented as an event study, with

six leads before and eight lags after the first wind turbine is built.35 A visual inspection of the leads

indicates no difference in time trends between our treatment and control groups, which suggests

common trend behavior pre-treatment.36

Suicides are extreme events. It could be the case that potential effects only emerge from more

than one installation. Thus, we increase the threshold that we regard as treatment. In Table 6.2,

33Appendix Figure E.17 Panel A illustrates that there are many counties with at least one wind turbine in 2000, i.e.
always treated counties. In our estimations, we focus on counties without a wind turbine in 2000 as only these allow us
to estimate potential causal effects on suicides from a new wind turbine. Appendix Figure E.17, Panel C, gives a first
indication that the average number of suicides per million between counties with and without turbines in 2000 follows a
similar trend. Figure E.18, Panel A, shows the number of counties that are treated by year; Panel B the number of counties
that are never treated. We observe that the number of counties that are treated is largest at the beginning of our observation
period. In line with this observation, Panel C shows the cumulative density of individuals that are treated by year, with a
much steeper increase during the first years, as for our self-reported health outcomes.

34Concentrating on non-urban counties allows us to analyze a homogeneous group of counties. Nevertheless, we include
urban counties in a robustness check below.

35As before, the period in which an installation is built is normalized to zero.
36Appendix Figure E.19 also indicates a common trend before treatment based on the two-way fixed effects estimator.
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Columns 2 and 3 reveal no effect, neither for ten or more installations nor for counties that reach

an installation density of 0.1 or more per square kilometer.37 The threshold of 0.1 installations

per square kilometer indicates a high turbine density. The value lies between the 90th percentile

value of 0.09 installations per square kilometer and the 95th percentile value of 0.13 installations per

square kilometer (for the pooled dataset of counties between 2000 and 2017). A visual inspection

of the corresponding event studies in Appendix Figure E.19, Panels B and C, reveals no difference

in time trends between our treatment and control groups, neither before nor after treatment, for both

alternative treatment thresholds. The only noticeable exception is the third lead in case of counties

that had ten or more turbines installed in 2000, which turns out significant with our two-way fixed-

effects estimator only.

Table E.10 shows that our results are robust in various dimensions. We look at the treatment

threshold of at least one wind turbine. In Column 1, we find no effects using the log-transformed

level of suicides as an outcome. This approach allows for capturing potentially heterogeneous effects

for counties with different suicide levels. In Columns 2 and 3, we focus on suicides per million

population again, controlling for the number and the log-transformed number of wind turbines,

respectively. Still, we find no evidence for effects of wind turbines on suicides. In Column 4,

we include urban areas. Again, there is no evidence of effects. In Column 5, we only focus on

the years between 2000 and 2009 (when wind turbines were smaller), and in Column 6, the years

between 2010 and 2017 (when they were larger). There is no evidence of effects in either period.

In Column 7, we also look at wind turbines nearby a county (within 4,000 meters) as treatment.38

Again, this alternative definition of treatment does not reveal any effects. Finally, in Column 8, we

also include counties with a wind turbine in 2000, i.e. always-treated counties. This approach only

reveals a correlation but allows for including counties in the north of Germany, where installations

are common due to more favorable wind conditions near the North Sea. If there is an effect of wind

turbines on suicides, we would still expect significant effects. Again, we find no difference in suicides

per population between counties with and those without wind turbines. We conclude that we find no

evidence of adverse health impacts of wind turbines on suicides as an extreme measure of negative

mental health outcomes.

6.7 Discussion and Conclusion

It is estimated that, by 2050, wind power will become the most important renewable energy after

solar (IEA, 2021). Despite its importance in the transition towards net zero, there is a heated, ongoing

37We drop observations close to thresholds. In Column 2, we neglect observations with between one and nine
installations and counties with an installation in 2000. In Column 3, we drop counties with more than 0.1 installations
per square kilometer in 2000 and observations with between 0.075 and 0.1 installations per square kilometer. In Table 6.1
Columns 2 and 3, we include urban counties in order to have a large enough control group.

38Appendix Figure E.17 Panel B is a close-up of the federal state of Schleswig-Holstein. For example, blue dots indicate
a wind turbine relevant for Pinneberg county (in yellow). Here, we consider not only blue dots within the county but also
those within 4,000 meters distance to the county border.
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debate about potential adverse health impacts of wind turbines on nearby residents, which in many

cases manifests itself in vocal resistance against new installations locally. This resistance is often

based on a body of evidence that is largely inconclusive and that relies mostly on cross-sectional

analyses and local case studies.

This paper set out to determine whether wind turbines have systematic, negative causal effects

on the health of nearby residents and, if so, which health dimensions are affected and by how much.

It also asked whether effects, if any, are spatially or temporally limited.

For this, we used representative longitudinal household data linked, based on precise geograph-

ical coordinates, to a nationwide dataset on wind turbines and a spatial difference-in-differences

design that exploited the staggered rollout of installations in Germany, a country that witnessed a

fast expansion of wind power since the year 2000. We used both two-way fixed-effects estimators

and the robust estimator by Sun and Abraham (2021) to explicitly account for potential treatment

effect heterogeneity due to changing technology over time. To our knowledge, we are the first to do

so.

We do not find evidence of temporary or even permanent negative effects on either general,

mental, or physical health in the 12-Item Short Form Survey (SF-12) (RAND, 2022). There are also

no effects on self-assessed health or on the number of doctor visits of nearby residents. Often cited

mechanisms through which adverse health impacts of wind turbines may come about include visual

and, in particular, noise pollution, potentially resulting in annoyance and sleep disturbances. When

looking at the frequency of experiencing negative emotions, sleep satisfaction, and the number of

hours of sleep, however, we do not find impacts. Finally, by exploiting administrative data on suicide

rates at the county level in Germany during our observation period and by replicating our analysis

on health outcomes for suicide rates, we also do not find impacts. Our results are robust to different

treatment and control radii as well as different bins around plants, to different plant sizes, and to

accounting for residential sorting. By calculating statistical power ex post, we confirm that our study

is sufficiently powered to detect a small effect size, if present.

While these findings cast doubt on systematic, causal negative effects of wind turbines on the

local population, our study has several limitations that warrant readers’ attention. For one, while

reliance on secondary data and quasi-experimental methods avoids priming respondents and ensures

external validity, our sample size and inference are limited when it comes to residents who live in

very close proximity to installations, i.e. below 2,000 meters. Similarly, our sample size requires

us, in most cases, to estimate average treatment effects. Although these are most relevant for policy

applications, they may cast potentially important heterogeneities. For example, theory and evidence

in psychology shows that some individuals are more sensitive to (changes in) their environment

than others (Pluess et al., 2023). Likewise, individuals who score high in terms of neuroticism,

negative affect, and frustration intolerance (Taylor et al., 2013), or who already have a negative

predisposition towards wind turbines pre-treatment (Jalali et al., 2016), have been suggested to react

more adversely to new installations. Unfortunately, we have no data to capture such individual
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differences. Finally, the context of Germany itself, in terms of culture and political climate where

residents are generally aware of climate change and favorably disposed toward renewable energy,

may itself impose limitations when it comes to transferability of findings to other countries.

Although we find no evidence of adverse health impacts, this does not preclude that other

externalities do not exist. Negative impacts on the house prices and the subjective wellbeing of

nearby residents, for example, are well documented (cf. Gibbons, 2015; Krekel and Zerrahn, 2017).

Furthermore, concern or fear of potential negative health consequences is a real phenomenon (cf.

Michaud et al., 2016), with actual consequences, including local protests or voting outcomes (cf.

Financial Times, 2021). However, recent studies suggest that residents develop more favorable

attitudes towards the technology after having been exposed to it (cf. Bayulgen et al., 2021;

Urpelainen and Zhang, 2022), suggesting learning about one’s preferences or rationalization ex-post.

In fact, Baxter, Morzaria, and Hirsch (2013) find that residents in communities without wind turbines

are more concerned about the technology and show lower support than residents in communities with

installations. Finally, wind turbines can also have positive externalities, for example on local fiscal

outcomes or air pollution, which for a balanced assessment need to be taken into account (Kahn,

2013).

In any case, local resistance may slow the transition to renewable energy and risks missing

climate action goals, which is why these concerns must be taken seriously and addressed by

policy, for example by actively involving resident communities in local planning and decision-

making processes and disseminating targeted, factual information grounded in scientific evidence

regarding potential impacts. Promising avenues for future research include how to achieve fairness

and procedural justice during new build projects, as well as distributional equity in sharing the burden

of external effects amongst the general population.
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A.1 Assumptions and data

A.1.1 Time series

All time series concerning generation (capacity factors for solar PV, wind on- and offshore, inflow

series for hydropower plants) are taken from ENTSO-E’s “Pan-European Climate Database (PECD)”

(De Felice, 2020). The load data is taken from ENTSO-E’s “Mid-term Adequacy Forecast (MAF)

2020” (ENTSO-E, 2018a).

A.1.2 Techno-economic parameters for technologies with endogenous capacities

Table A.1: Technical and costs assumptions of installable generation technologies

Technology Thermal efficiency [%] Overnight investment
costs [EUR/kW]

Technical Lifetime
[years]

Bioenergy 0.487 1951 30
Run-of-river 0.9 600 25
PV 1 3000 50
Wind offshore 1 2,506 25
Wind onshore 1 1,182 25

Table A.2: Technical and cost assumptions of installable storage technologies

Technology
Marginal costs

of storing in
[EUR/MW]

Marginal costs
of storing out
[EUR/MW]

Efficiency
storing in

[%]

Efficiency
storing out

[%]

Efficiency
self-discharge

[%]

Overnight
investment costs

in energy
[EUR/kWh]

Overnight
investment costs

in capacity charge
[EUR/kW]

Overnight
investment costs

in capacity discharge
[EUR/kW]

Technical
lifetime
[years]

Lithium-Ion 0.5 0.5 92 92 100 200 150 150 13

Power-to-gas-to-power 0.5 0.5 50 50 100 1 3000 3000 20

Pumped-hydro 0.5 0.5 80 80 100 80 1100 1100 60

Reservoir - 0.1 - 95 100 10 - 200 50

For the principal technical and cost parameters, we rely on previous research (Gaete-Morales, Kittel,

et al., 2021), and these are shown in Tables A.1 and A.2. For all technologies (generation and

storage), we assume an interest rate for calculating investment annuities of 4%. The assumed power

of installed bioenergy capacities is provided by ENTSO-E (ENTSO-E, 2018a).
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A.1.3 Exogenous generation and storage capacities

Table A.3: Assumptions on exogenous generation and storage capacities

Technology Variable AT BE CH CZ DE DK ES FR IT NL PL PT

Bioenergy Power [GW] 0.50 0.62 0 0.40 7.75 1.72 0.51 1.93 1.54 0.46 0.85 0.61

Run-of-River Power [GW] 5.56 0.17 0.64 0.33 3.99 0.01 1.16 10.96 10.65 0.04 0.44 2.86

Pumped-hydro (closed)

Discharging power [GW] 0 1.31 3.99 0.69 6.06 0 3.33 1.96 4.01 0 1.32 0

Charging power [GW] 0 1.15 3.94 0.65 6.07 0 3.14 1.95 4.07 0 1.49 0

Energy [GWh] 0 5.30 670 3.70 355 0 95.40 10 22.40 0 6.34 0

Pumped-hydro (open)

Discharging power [GW] 3.46 0 0 0.47 1.64 0 2.68 1.85 3.57 0 0.18 2.95

Charging power [GW] 2.56 0 0 0.44 1.36 0 2.42 1.85 2.34 0 0.17 2.70

Energy [GWh] 1722 0 0 2 417 0 6185 90 382 0 2 1966

Reservoir
Discharging power [GW] 2.43 0 8.15 0.70 1.30 0 10.97 8.48 9.96 0 0.18 3.49

Energy [GWh] 762 0 8155 3 258 0 11840 10000 5649 0 1 1187
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A.1.4 Interconnection capacities

Table A.4: Installed Net Transfer Capacities (NTC) in model runs with interconnection

link
Installed capacity

[MW]

AT_CH 1700

AT_CZ 1100

AT_DE 7500

AT_IT 1470

BE_DE 1000

BE_FR 5050

BE_NL 4900

CH_DE 5300

CH_FR 4000

CH_IT 4850

CZ_DE 2300

CZ_PL 700

DE_DK 4000

DE_FR 4800

DE_NL 5000

DE_PL 3750

DK_PL 500

ES_FR 9000

ES_PT 4350

FR_IT 3255

The assumed Net Transfer Capacities (NTC) provided in Table A.4 are taken from from the TYNDP

2018 (Appendix IV - Cross-border capacities, NTC ST 2040) (ENTSO-E, 2018a).
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Figure A.1: Geographic scope of the model and existing interconnections (related to STAR Methods)

Figure A.1 depicts the countries that are part of the model and the respective interconnections

between them.

A.2 Model

Our analysis is model-based, using the open-source capacity expansion model DIETER. A short

introduction is provided in section 2.2.3, more details are provided in previous publications (Zerrahn

and Schill, 2017; Gaete-Morales, Kittel, et al., 2021). For illustrative reasons, we provide below

the formulation of two key equations of the model: the objective function and the energy balance.

Before, we provide a non-exhaustive nomenclature of sets, variables, and parameters used in these

equations. Variables are defined with uppercase letters and parameters with lowercase letters.

Sets n is the set of countries, h the set hours, dis the set of dispatchable generators, nd the set of

non-dispatchable generators, and sto the set of storage technologies.

Electricity generation and flows [MWh] Gn,dis,h is the generation of the dispatchable generation

technology dis in country n in hour h. S TOout is the electricity generation (by discharge) of

storage technologies, S TOin is the charging, and RS Vout is the electricity generation (by outflows)

of reservoirs. Fl,h is the electric energy sent over line l in hour h.

Installed generation capacities [MW] N is the installed capacity of a generation technology.

N p−out is the installed discharging capacity of storage technologies, N p−in is the installed charging

capacity of storage technologies.
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Energy installation variables [MWh] Ne is the installed energy capacity of storage technologies.

Costs [Euro/MW(h)] cm are marginal costs of generation, ci annualized investment costs of

installation power and energy capacities (generation and storage), c f ix are the respective annual fixed

costs.

Objective function DIETER minimizes the total cost Z, consisting of variable generation costs

(first term), investment costs of dispatchable and non-dispatchable generators (second term), as well

as fixed and variable costs of storage (third term). The objective function of the model is given as:

Z =
∑︂

n

[︄∑︂
h

⎡⎢⎢⎢⎢⎢⎢⎣∑︂
dis

cm
n,disGn,dis,h +

∑︂
sto

cm
n,sto

(︂
S TOout

n,sto,h + S TOin
n,sto,h

)︂
+ cm

n,rsvRS Vout
n,rsv,h

]︂
+
∑︂
dis

[︂(︂
ci

n,dis + c f ix
n,dis

)︂
Nn,dis

]︂
+
∑︂
nd

[︂(︂
ci

n,nd + c f ix
n,nd

)︂
Nn,nd

]︂
+
∑︂
sto

[︂(︂
ci,p−out

n,sto + c f ix,p−out
n,sto

)︂
N p−out

n,sto +
(︂
ci,p−in

n,sto + c f ix,p−in
n,sto

)︂
N p−in

n,sto

+
(︂
ci,e

n,sto + c f ix,e
n,sto

)︂
Ne

n,sto

]︂ ]︄
(A.1)

Those fixed variables (NTC capacities, installed capacities of hydro and bioenergy), and some

nomenclature details, are omitted in the objective function for the reader’s convenience. The full

objective function is provided in the model code.

Energy balance The wholesale energy balance reads as follows:

dn,h +
∑︂
sto

S TOin
n,sto,h

=∑︂
dis

Gn,dis,h +
∑︂
nd

Gn,nd,h +
∑︂
sto

S TOout
n,sto,h +

∑︂
rsv

RS Vout
n,rsv,h

+
∑︂

l

il,nFl,h ∀n, h (A.2)

The left-hand side is total electricity demand in hour h at node n plus charging of storage

technologies; the right-hand side is the total generation, including storage discharging, plus net

imports: Fl,h represents the directed flow on line l. If Fl,n > 0, electricity flows from the source

to the sink of the line and reversed for Fl,n < 0. With the incidence parameter il,n ∈ {−1, 0, 1}, source,

and sink are exogenously defined.
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A.3 Background on factorization

To identify the importance of different factors that reduce optimal storage need through intercon-

nection, we (1) define several counterfactual scenarios and (2) then attribute the overall change to

different factors using a “factorization” method (Stein and Alpert, 1993; Lunt et al., 2021).

To explain the principles of factorization, we borrow an example used in another paper (Lunt

et al., 2021). Using a case study from the field of climate science, we aim to explain why oceans

around three million years ago were warmer than today. Assuming that two important factors are

atmospheric CO2 concentration and the extent and volume of large ice sheets, we apply a climate

model and run several counterfactual scenarios. Both factors can have two kinds of states: CO2

concentration can be low or high, and ice sheets can be small or large. Comparing different model

outcomes, we can identify a “sole” CO2 and ice sheet effect, but also an interaction effect between

CO2 concentration and ice sheet extension on ocean temperature.

Following the notation introduced in previous research (Schär and Kröner, 2017), we describe the

different scenarios in the following way: in f0, ice sheets are small, and CO2 is low. In the scenario

f1, the ice sheets are large, but CO2 concentration is low. In scenario f2, ice sheets are small, but

CO2 concentration is high. Finally, in scenario f12, ice sheets are large, and CO2 concentration is

high.

The factorization method on which we rely on (Stein and Alpert, 1993) that defines the impact

of the different factors in the following way:

f̂ 1 = f1 − f0, (A.3)

f̂ 2 = f2 − f0. (A.4)

f̂ 1 is the sole contribution of ice sheets, f̂ 2 of CO2 concentration to the change in ocean temperature.

However, with this factorization approach, the sum of the individual effects does not (in general) add

up to the overall effect:

f̂ 1 + f̂ 2 ≠ f12 − f0 (A.5)

Thus, an “interaction effect” f̂ 12 is introduced, which captures the joint effect of ice sheets size and

CO2 concentration on ocean temperature (Stein and Alpert, 1993), such that f̂ 1, f̂ 2, and f̂ 12 add up

to total the total effect f12 − f0:

f12 − f0 = f̂ 1 + f̂ 2 + f̂ 12

⇔ f̂ 12 = f12 − f0 − f̂ 1 − f̂ 2

⇔ f̂ 12 = f12 − f0 − ( f1 − f0) − ( f2 − f0)

⇔ f̂ 12 = f12 − f1 − f2 + f0 (A.6)
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If interested in the overall effect of CO2 concentration and ice sheets on ocean temperatures and not

in the interaction term, f̂ 12 has to be “distributed” to the other factors f̂ 1 and f̂ 2. This distribution

can be done in different ways. One possibility is to share that interaction term equally between the

two factors that are involved in that interaction term. Following that logic, the total effect of the two

factors becomes:

f̂
total
1 = f1 − f0 +

1
2

f̂ 12 =
1
2

(( f1 − f0) + ( f12 − f 2)) (A.7)

f̂
total
2 = f2 − f0 +

1
2

f̂ 12 =
1
2

(( f2 − f0) + ( f12 − f 1)) (A.8)

and capture the overall effect of ice sheets ( f̂ 1) and CO2 concentration ( f̂ 2) on ocean temperatures.

For a complete decomposition of factors, 2n runs have to be conducted where n is the number of

factors.

A.4 Overview of scenario runs

Table A.5: Overview of scenario runs

Run Identifier (1) Interconnection (2) Wind (3) Solar PV (4) Load (5) Hydro (6) Bio

1 f0 no harmonized harmonized harmonized harmonized harmonized

2 f1 yes harmonized harmonized harmonized harmonized harmonized

3 f2 no not harmonized harmonized harmonized harmonized harmonized

4 f3 no harmonized not harmonized harmonized harmonized harmonized

5 f4 no harmonized harmonized not harmonized harmonized harmonized

6 f5 no harmonized harmonized harmonized not harmonized harmonized

7 f6 no harmonized harmonized harmonized harmonized not harmonized

8 f12 yes not harmonized harmonized harmonized harmonized harmonized

9 f13 yes harmonized not harmonized harmonized harmonized harmonized

. . . . . . . . . . . . . . . . . . . . . . . .

63 f23456 no not harmonized not harmonized not harmonized not harmonized not harmonized

64 f123456 yes not harmonized not harmonized not harmonized not harmonized not harmonized

Table A.5 provides an intuition of which scenario runs are performed and how they are defined. For

every weather year, 64 runs are needed for a complete factorization.
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(c) Storage discharging power, short duration
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(d) Storage discharging power, long duration
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Notes: Every dot is the scenario result based on one weather year. The middle bar shows the median value. The box
shows the interquartile range (IQR), which are all values between the 1st and 3rd quartile. The whiskers show the range
of values beyond the IQR, with a maximum of 1,5 x IQR below the 1st quartile and above the 3rd quartile.

Figure A.2: Relative contribution of different factors to the change in storage energy and discharging
power capacity related to interconnection

Heterogeneity in wind power explains between 55% and 104% of short-duration storage energy and

discharging power capacity reduction and 52% to 85% of long-duration storage capacity reductions,

respectively. At the other end of the spectrum, country-specific differences in installed bioenergy

hardly have an effect. Differences in hydropower, load time series, and PV profiles have varying
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contributions, especially for short-duration storage. The effect of hydropower ranges between -22%

and +24% for storage energy and -20% and +18% for storage discharging power (Figure A.2).

We find similar outcomes for solar PV. The effect of different solar PV capacity factors through

interconnection on aggregate optimal short-duration storage energy or discharging capacity varies

between -17% and +13%, or -22% and 8%, respectively. This contrasts with the results for wind

power, which always decreases storage needs.

Negative percentage values indicate that the current heterogeneous mix of hydro capacities (run-

of-river, reservoirs, and pumped hydro) may even increase optimal storage needs compared to a

setting with equal relative shares, thus harmonized installations. Exploring this combined technology

effect in detail merits further investigation.

Overall, the influence of different weather years on the composition of the factors is more

pronounced for short-duration than for long-duration storage.
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Notes: Differentiated by short- and long-duration, the strength of each individual factor is depicted,
covering all 10 weather years. If below zero, a factor negatively impacts aggregate optimal storage
energy capacity. If above zero, a factor increases aggregate optimal storage energy capacity.

Figure A.3: Impact of all factors on storage energy capacity in all years
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Notes: Differentiated by short- and long-duration, the strength of each individual factor is depicted for
the weather year 2016. If below zero, a factor negatively impacts aggregate optimal storage energy
capacity. If above zero, a factor increases aggregate optimal storage energy capacity.

Figure A.4: Impact of all factors on storage energy capacity in 2016
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Figure A.5: Installed power plant and storage discharging capacities for scenarios with or without
interconnection

Figure A.5 shows optimal generation and storage capacities for scenarios with and without

interconnection. While solar PV and onshore wind power dominate the capacity mix in all countries,

the share of onshore wind power increases in scenarios with interconnection compared to the setting

with isolated power systems in all countries (left panel). This further corroborates our conclusion that

geographical balancing particularly helps to smooth wind power variability across countries. The

Figure also shows that the overall generation capacity decreases in a setting with interconnection

(right panel). This is largely driven by a lower need for solar PV generation capacity, enabled by

lower curtailment and better (cross-border) use of installed wind power capacities.
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Notes: Data of the weather year 2016 shown.

Figure A.6: Average hourly usage rates of interconnections
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Average utilization rates of the modeled interconnections are both relatively high and homoge-

neous, with values between around 50% and 80% (Figure A.6). Such high usage rates imply that

the NTC expansion assumed by ENTSO-E (ENTSO-E, 2018a) for 2040 may not be sufficient for the

fully renewable central European power sector modeled here. The connections between Germany

and its neighbors France, Poland, and Switzerland, as well as the lines between Austria and Italy

and between France and Italy, are most heavily used. This indicates that further extensions of these

connections would be particularly desirable. In contrast, interconnections between Denmark and the

Netherlands as well as Denmark and Germany are relatively under-utilized.
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B.1 Model

B.1.1 Electric vehicles

In this analysis, we include battery electric vehicle (BEV) time series using the emobpy tool Gaete-

Morales, Kramer, et al., 2021. The dataset Gaete-Morales, 2021 used has been created utilizing

data from the “Mobilität in Deutschland” survey, distinguishing between commuter and spontaneous

drivers and incorporating various factors such as trip frequencies, distances, trip duration, departure

times, charging station availability, and charging strategies, as well as the use of popular BEV

models.

The dataset encompassed multiple charging strategies. For this research, we select the

“immediate-balanced” approach to reflect the electricity drawn from the grid. Under this charging

strategy, the vehicles’ batteries are charged upon arriving at charging stations, with a constant and

often lower power rating than the charging station. This approach ensured that the BEV reached a

100% state of charge just before commencing the next trip. The selected time series are scaled to

represent the demand for 12.5 million battery electric vehicles with an annual electricity demand of

29 TWh (see Figure B.1).
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Figure B.1: Hourly average electricity demand of 12.5 million BEV for a representative week.

B.1.2 Green hydrogen

The production of green hydrogen is modeled in a simple way, following the approach described

in Zerrahn, Schill, and Kemfert, 2018. We assume that a given hydrogen demand h2demand of

28 TWh has to be covered by electrolysis over the course of a year (Equation B.1). That is, we
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implicitly assume a temporally flexible hydrogen demand or unlimited hydrogen storage. In contrast,

investments into electrolysis capacity are modeled endogenously (Equation B.3).

h2demand =

h∑︂
H2prod

h (B.1)

H2prod
h = H2elec

h × 0.71 (B.2)

H2elec
h ≤ INVH2 (B.3)

B.2 Tables

Table B.1: Building archetypes and heating energy demand assumptions for Germany in 2030

Year of construction Overall number of Annual heating energy Floor area
buildings [million] demand [kWh/m2] [million m2]

One- & two-family houses
Before 1957 1.41 276 247
1958-1978 2.46 203 431
1979-1994 2.55 153 446
1995-2009 3.02 112 528
2010-2019 1.75 66 306
After 2019 2.15 15 375

Multi-family houses
Before 1957 0.34 223 170
1958-1978 0.64 164 322
1979-1994 0.46 130 230
1995-2009 0.47 103 239
2010-2019 0.36 51 181
After 2019 0.46 11 232
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Table B.2: Assumptions on capacity bounds [in GW]

Country Germany Austria Belgium Switzerland Czech Republic Denmark France Luxembourg Italy Netherlands Poland
Technology Lower Upper fixed capacities
Run-of-river hydro 5.60 5.60 6.14 0.15 4.11 0.40 0 13.64 0.05 5.64 0.05 0.54

Nuclear 0 0 0 0 1.19 4.04 0 58.21 0 0 0.49 0

Lignite 0 0 / 9.3 0 0 0 3.89 0 0 0 0 0 6.32

Hard coal 0 0 / 9.8 0 0.62 0 0.37 0.77 0 0 0 0 9.88

Natural gas (CCGT) 0 17.60 2.82 7.61 0 1.35 0 6.55 0 38.67 8.65 5.00

Natural gas (OCGT) 0 19.60 0.59 1.08 0 0 0 0.88 0 5.40 0.64 0

Oil 0 1.20 0.17 0 0 0.01 0 0 0 0 0 0

Other 0 0 0.95 1.32 0.89 1.23 0.24 1.87 0.03 5.99 3.77 6.82

Bio energy 6.00 6.00 0.60 0.21 1.20 1.06 0.67 2.56 0.05 4.93 0.54 1.41

Onshore wind 56.00 115 / +Inf 10.00 5.93 1.25 3.00 5.48 44.11 0.35 19.05 8.30 11.28

Offshore wind 7.77 30 / +Inf 0 4.30 0 0 4.78 3.00 0 0.60 6.72 0.90

Solar PV 59.00 +Inf 15.00 13.92 11.00 10.50 4.75 42.63 0.25 49.33 15.46 12.19

Lithium-ion batteries

... power in/out 0 +Inf 0.53 0.90 0.39 0.50 0.44 3.10 0.06 1.56 0.75 0.25

... energy [GWh] 0 +Inf 0.53 0.90 0.39 0.50 0.44 3.10 0.06 1.56 0.75 0.25

Power-to-gas-to-power

... power in/out 0 +Inf 0 0 0 0 0 0 0 0 0 0

... energy [GWh] 0 +Inf 0 0 0 0 0 0 0 0 0 0

Pumped hydro storage

... power in/out 11.60 11.60 5.70 1.40 3.99 1.16 0 3.50 1.31 11.90 0 1.50

... energy [GWh] 81.20 81.20 39.88 9.77 27.92 8.11 0 24.50 9.17 83.29 0 10.51

Reservoirs

... power out 2.94 2.94 7.83 0 8.15 1.17 0 10.09 0 13.07 0 0.36

... energy [TWh] 0 0 15.66 0 16.30 2.34 0 20.19 0 26.13 0 0.73

Electrolysis 10 10 0 0 0 0 0 0 0 0 0 0

Notes: Based on Bundesnetzagentur (Bundesnetzagentur, 2018) and ENTSO-E (ENTSO-E, 2018b). If two numbers are
present, the first one refers to the baseline scenario, while the second refers to sensitivity analyses. All numbers are
provided in GW, except for storage energy, which is provided in GWh or TWh.
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Table B.3: Cost and technology parameters

(a) Electricity storage

Interest Lifetime Availability Overnight costs Efficiency Marginal costs
Technology rates energy charging

power
discharging
power

charging discharging charging discharging

[years] [1000 EUR] [1000 EUR] [1000 EUR] [EUR] [EUR]

Li-ion
battery 0.04

20 0.98 142 80 80 0.96 0.96 0.5 0.5

Pumped hy-
dro

80 0.89 10 550 550 0.97 0.91 0.5 0.5

Power-to-
gas-to-power

25 0.95 2 550 435 0.73 0.42 0.5 0.5

(b) Electricity generation

Technology Interest rates Lifetime Availability Overnight costs Fixed costs Efficiency Carbon content Fuel costs
[years] [1000 EUR] [1000 EUR] [t/MWh] [EUR/MWh]

Run-of-river

0.04

50 1.00 3,000 30 0.90 0.00 0
Nuclear 40 0.91 6,000 30 0.34 0.00 3.4
Lignite 35 0.95 1,500 30 0.38 0.40 5.5
Hard coal 35 0.96 1,300 30 0.43 0.34 8.3
Closed-cycle gas turbine 25 0.96 800 20 0.54 0.20 30.0
Open-cycle gas turbine 25 0.95 400 15 0.40 0.20 30.0
Oil 25 0.90 400 6.7 0.35 0.27 29.0
Other 30 0.90 1,500 30 0.35 0.35 18.1
Bioenergy 30 1.00 1,951 100 0.49 0.00 32.5
Wind onshore 25 1.00 1,182 35 1.00 0.00 0
Wind offshore 25 1.00 2,506 100 1.00 0.00 0
Solar photovoltaic 25 1.00 400 25 1.00 0.00 0
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Capacity bounds, costs, and technical parameters

Table C.1: Cost and technology parameters

(a) Electricity storage and reservoirs

Interest rates Lifetime Availability Overnight costs Efficiency Marginal costs
energy charging power discharging power charging discharging charging discharging

Technology [years] [years] [years] [1000 EUR] [1000 EUR] [1000 EUR] [EUR] [EUR]

Lithium-ion batteries

0.04

20 0.98 300 50 10 0.97 0.97 0.3 0.3
Power-to-gas-to-power 23 0.95 0.2 305 850 0.73 0.6 1.2 1.2
Pumped hydro (open/closed) 80 0.98 10 550 550 0.97 0.91 0.56 0.56
Hydro reservoirs 50 0.98 10 200 - 1.00 0.95 0 0.1

(b) Electricity generation

Technology Interest rates Lifetime Availability Overnight costs Fixed costs Efficiency Carbon content Fuel costs
[years] [1000 EUR] [1000 EUR] [t/MWh] [EUR/MWh]

Closed-cycle gas turbine

0.04

25 0.96 830 28 0.61 0.20 26.0
Bioenergy 25 1.00 900 9 0.45 0.00 10.0
Hard coal 35 0.96 1,300 30 0.43 0.34 10.1
Lignite 35 0.95 1,500 30 0.38 0.40 4.0
Nuclear 40 0.91 6,000 30 0.34 0.00 1.7
Oil 25 0.90 400 7 0.35 0.27 41.7
Other 30 0.90 1,500 30 0.35 0.35 18.1
Solar photovoltaic 40 1.00 597 10 1.00 0.00 0.0
Wind onshore 50 1.00 3,000 30 0.90 0.00 0.0
Wind offshore 30 1.00 1,795 39 1.00 0.00 0.0
Run-of-river 30 1.00 1,036 13 1.00 0.00 0.0
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Technology Austria Belgium Denmark France Germany Italy Luxembourg Netherlands Switzerland
low up low up low up low up low up low up low up low up low up

Natural gas (CCGT) 4.0 inf 8.1 inf 4.0 inf 7.2 inf 25.4 inf 40.5 inf 0 inf 12.4 inf 0 inf

Oil 0 0.16 0 0.2 0 2.5 0 1.3 0 1.0 0 0 0 0 0 0 0 0

Other 0 0.96 0 1.4 0 1.3 0 5.7 0 8.8 0 6.4 0 0.1 0 4.2 0 0.6

Hard coal 0 0 0 0 1.2 1.2 0 0 12.3 12.3 0 0 0 0 2.7 2.7 0 0

Lignite 0 0 0 0 0 0 0 0 14.6 14.5 0 0 0 0 0 0 0 0

Nuclear 0 0 0 0 0 0 61.8 61.8 0 0 0 0 0 0 0.5 0.5 2.2 2.2

Bioenergy 0.6 0.6 0.9 0.9 6.8 6.8 2.3 2.3 7.2 7.2 4.5 4.5 0.08 0.08 1.9 1.9 0.4 0.4

Run-of-river hydro 6.1 6.1 0.1 0.1 0 0 13.6 13.6 4.7 4.7 6.2 6.2 0.04 38 0.04 0.04 4.2 4.2

Solar PV 5.0 inf 7.5 inf 15.4 inf 18.2 inf 74.5 inf 28.6 inf 0.3 inf 18.7 inf 5.5 inf

Onshore wind 5.5 inf 3.6 inf 16.4 inf 24.1 inf 64.0 inf 15.7 inf 0.3 inf 6.0 inf 0.2 inf

Offshore wind 0 inf 2.3 inf 10.0 inf 2.5 inf 11.1 inf 0.3 inf 0 inf 5.9 inf 0 inf

Lithium-ion batteries

... power in/out 0 inf 0 inf 0 inf 0 inf 0 inf 0 inf 0 inf 0 inf 0 inf

... energy [GWh] 0 inf 0 inf 0 inf 0 inf 0 inf 0 inf 0 inf 0 inf 0 inf

Power-to-gas-to-power

... power in/out 0 inf 0 inf 0 inf 0 inf 0 inf 0 inf 0 inf 0 inf 0 inf

... energy [GWh] 0 inf 0 inf 0 inf 0 inf 0 inf 0 inf 0 inf 0 inf 0 inf

Pumped hydro storage (closed)

... power in 0.3 0.3 1.2 1.2 0 0 2.0 2.0 7.4 7.4 7.4 7.4 1.0 1.0 0 0 1.9 1.9

... power out 0.3 0.3 1.2 1.2 0 0 2.0 2.0 7.4 7.4 7.3 7.3 1.3 1.3 0 0 1.9 1.9

... energy [GWh] 1.8 1.8 5.3 5.3 0 0 10 10 242 242 70.4 70.4 5.0 5.0 0 0 70 70

Pumped hydro storage (open)

... power in 5.2 5.2 0 0 0 0 1.9 1.9 1.4 1.4 2.1 2.1 0 0 0 0 2.1 2.1

... power out 6.0 6.0 0 0 0 0 1.9 1.9 1.6 1.6 3.3 3.3 0 0 0 0 10.7 10.7

... energy [GWh] 1,732 1,732 0 0 0 0 90 90 417 417 309 309 0 0 0 0 8,800 8,800

Reservoirs

... power out 2.5 2.5 0 0 0 0 8.9 8.9 1.3 1.3 9.6 9.6 0 0 0 0 0 0

... energy [TWh] 0.8 0.8 0 0 0 0 10 10 0.2 0.2 5.6 5.6 0 0 0 0 0 0
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Results
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Figure C.1: Generation capacities of all countries

Figure C.1 depicts the generation capacities of all countries in all assessed weather years for the base

scenarios with thermal heat storage of 2 hours.
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Figure C.2: All residual load curves

Figure C.2 depicts the residual load duration curves in all scenarios and all years, with and

without a heat pump rollout. The jump caused by heat pumps is clearly visible, showing itself in the

differences in firm generation capacities (see Figure 4.9). While the patterns are relatively similar

in all scenarios, wind_cap shows a clearly higher level as the missing wind power pushes up the

residual load duration curve.
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Figure C.3: Electricity generation (average all years)
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Figure C.3 shows total electricity generation by technology as an average over all years.

Storage technologies have negative values as discharging minus charging is shown, considering

inefficiencies.
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This section provides details on the deployed methodology and presents supplemental results.

Section D.1 discusses data sources and provides some summary statistics. Section D.2 gives a

methodological introduction to local linear causal trees. Section D.3 contrasts it with alternative

approaches. Section D.4 provides supplemental results on robustness.

D.1 Data and descriptive statistics

D.1.1 Gas consumption data

Instantaneous gas consumption metering for residential and commercial customers is still rare in

Germany, such that accurate day-by-day consumption profiles for individual households or business

units are unavailable (ACER, 2022). In the absence of directly metered data, the German Network

Agency relies on residual load data published by the German gas exchange Trading Hub Europe

(THE). The residual load is derived by taking the difference between gas inflows and gas outflows

from the network to downstream networks, storages, other countries, or large-scale customers

(BDEW, 2021). These data are by design for the whole German market area and hence our analysis

cannot take into account any spatial differentiation between consumption patterns. Very recent data

are subject to revisions, and final data for a given date are only available after ca. 1.5 months.1

Therefore, at the time of writing, the last available month of final data is December 2022. The

publicly available dataset includes the years 2018-2022.

D.1.2 Weather data and other controls

Residential and commercial gas demand is heavily driven by heating demand inducing a high depen-

dence on outside air temperatures and other weather variables. Germany’s National Meteorological

Service (DWD) publishes dozens of weather parameters for hundreds of weather stations daily.

They are available through an application programming interface (API) that permits downloading

specific data with custom programming scripts. We implemented our download routine in Python

(see Section D.5 below). While the model described in the next section could potentially deal with

a large number of covariates by means of regularisation methods such as a least absolute shrinkage

and selection operator (LASSO), a regularised regression method that constrains the L1 norm of the

coefficient vector helping to select only important regressors, we restrict ourselves to a concise set

that accounts for a very large share of the gas demand variation in the control period.

For each day and every weather station, we access the average temperature, as well as the

maximum and minimum temperatures. The latter accounts for extreme temperature changes during

a single day. To control for thermal inertia, three lags of average, minimum, and maximum

1THE publishes final data according to ‘M+2M-10WD’, which means that final data for the current month ‘M’ are
published two months later (‘+2M’) minus 10 working days (‘-10WD’). This information is provided in a data Excel file
available at www.tradinghub.eu/en-gb/Publications/Transparency/Aggregated-consumption-data. Hence, for December
2022, final data have been available since the 15th of February.
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temperatures are added to the model2 Solar irradiation might be conducive to heating demand

reductions not only through its effect on air temperatures. We proxy solar irradiation by the

sunshine duration per day in hours. As discussed in the previous subsection, the gas demand data

is only available at a national level. Hence, we need to aggregate the covariates spatially. Other

studies use population-weighting to average across spatially disaggregated reanalysis data, a blend

of historical data points and model outputs (Ruhnau, Stiewe, et al., 2022). For simplicity, we choose

to take the median across weather stations. We prefer the median over a simple average so as to

not introduce biases from extreme observations, such as measurements from Germany’s highest

mountain Zugspitze. Lastly, we include fixed effects for months and weekends as well as national

holidays.

D.1.3 Summary statistics

In Table D.1, we present a few key statistics of our data set. We distinguish between 2018-2021, the

business-as-usual period, and 2022, the year subject to behavioral savings. It is evident from the top

panel that average gas consumption is somewhat lower in 2022 compared to previous years. For the

weather variables in the following panels, the statistics are quite close to each other, indicating good

overlap, a key requirement for the validity of the method discussed in the next section (Wager and

Athey, 2018). For exposition, we plot the mean temperature in the September to December 2022

period against the mean, minimum and maximum temperatures of the same period in 2018-2021 in

Figure D.1
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Figure D.1: Mean temperatures

2The German building stock equipped with gas-fired heating has varying degrees of insulation. By allowing the model
to choose the relative importance of temperatures on preceding days non-parametrically, it accounts flexibly for the average
impact of insulation on gas demand.
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Table D.1: Selected summary statistics

Variable Statistic 2018-2021 2022

avg 1088.44 966.66
Gas consumption min 165.35 162.93

max 3273.74 2668.29
std 764.83 726.95
avg 10.18 10.61

Mean temperature min -9.6 -6
max 27.2 26.2
std 7.06 7.03
avg 5.63 5.83

Minimum temperature min -13.7 -10
max 18.2 16.95
std 5.99 5.87
avg 14.8 15.43

Maximum temperature min -6 -3
max 35.5 35.6
std 8.48 8.46
avg 4.96 5.54

Sunshine duration min 0 0
max 15.23 14.65
std 4.33 4.38

Figure D.2 shows the relationship between gas consumption and the daily mean temperature

differentiated by calendar month (color) and period (marker shape). The figure demonstrates the

non-linear relationship between mean temperature and gas consumption.

D.2 Model description

As evident from Figure D.2, the relationship between weather variables and gas consumption is

non-linear. Traditional methods, such as heating degree day corrections or parametric polynomial

models, may introduce biases, especially at the boundary of the support.

We deploy a fully data-driven, non-parametric approach that can not only deal with non-

linearities in the relationship between covariates and gas consumption but also with heterogeneity

in behavioral savings conditional on the covariates, such as temperature or month. Non-parametric

models do not require the formulation of a functional relationship between relevant factors, the

covariates, and the variable of interest. Causal forests pioneered by (Wager and Athey, 2018), and

refined with doubly-robust techniques in (Athey, Tibshirani, and Wager, 2019), extend a classical

machine learning method, random forests (Breiman, 2001). We provide short explanations of these

terms below.
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Figure D.2: Relationship between mean temperature and gas consumption by month and period

D.2.1 Random forests

Random forests predict a variable of interest conditional on a set of covariates by averaging over the

predictions of a potentially large number of decision trees. A decision tree splits the data set into

subsets, or neighborhoods, in the covariate domain. In our case, a simple tree could first divide the

data set depending on whether a given observation has a mean temperature above or below 10 degrees

Celsius. In the below 10 degrees subset, the next split could be based on whether an observation is

from a calendar month before March or not. A completely different split could divide the above 10

degrees subset. Further splits may follow. The final subsets, or neighborhoods, are called leaves. For

each leaf, the random forest algorithm fits a local model. In the classic implementation, this local

model is a simple average of the variable of interest of all observations within this leaf. The more

refined version used below fits a local linear model instead. The algorithm selects splitting rules in

order to minimize some prediction error metric, such as the mean squared error. Taken together,

the collection of local models can represent complicated non-linear relationships without having to

specify a functional form. As shown (Breiman, 2001) that the average of a large number of decision

trees estimated on bootstrap samples improves the predictive power, a forest usually consists of at

least a few hundred decision trees.

D.2.2 Causal inference and causal forests

Causal forests use random forests to the prediction of treatment effects in a potential outcomes

framework (e.g. Rubin, 2005). The fundamental problem of causal inference is that we cannot

observe what would have happened to a treated unit in the absence of the treatment (Holland, 1986).

In our case, the treatment corresponds to all factors discussed above regarding the looming supply
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crunch, assuming to start after 23/02/2022. In order to identify the treatment effect, i.e. the behavioral

savings, modelers have different options ranging from structural models to randomized experiments.

Observational studies, like the one at hand, aim to emulate the randomization of an experiment, e.g.,

by controlling for all factors that affect the propensity of being treated. Provided we can observe

all such factors, the treatment assignment conditional on the covariates becomes as good as random.

Two methods (of many) for controlling for the covariates affecting treatment selection are regression

and inverse propensity score weighting (IPW). Combining the two leads to the class of doubly robust

estimators that have the advantage of recovering the treatment effect even if only one of the two

methods is correctly specified.

Much like a random forest, a causal forest splits the data set based on rules referring to covariate

values. However, the objective sought to optimize by selecting the splits is different. We do not have

data on the true treatment effect such that we cannot optimize a prediction error metric. Instead, the

causal forest algorithm aims to determine neighborhoods in the covariate domain in such a way that

the estimated treatment effects are as similar as possible within a neighborhood and as dissimilar as

possible between neighborhoods (Tibshirani et al., 2023). The conditional average treatment effects

are especially useful in a context like ours where the magnitude of behavioral savings is expected to

vary significantly by weather conditions.

D.2.3 Model formulation and estimation

Let Yt(1) be the gas consumption in period t in the presence of behavioral savings and Yt(0) be the gas

consumption in the same period in the absence of behavioral savings. Consequently, the observed

consumption can be expressed by:

Yt = WtYt(1) + (1 − Wt)Yt(0)

where Wt ∈ {0, 1} indicates the presence of behavioral savings. In our base case, Wt = 1 for all

t ≥ 24/02/2022. We are interested in the effect of behavioral savings conditional on covariates Xt

defined by:

τ(x) = E[Yt(1) − Yt(0)|Xt = x] (D.1)

Yet, Yt(1) and Yt(0) are not observable at the same time, such that the function τ(x) is not directly

identifiable.

We assume strict exogeneity conditional on the covariates Xt, i.e., there are no unobserved

confounders of Wt and Yt, and after controlling for the covariates the treatment assignment is as

good as random.

{Yt(1),Yt(0)} ⊥ Wt|Xt
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We further assume that residential and commercial gas consumption Yt on a day t follows the

following partially linear model:

Yt = τ(Xt)Wt + f (Xt) + εt (D.2)

The effect of behavioral savings on consumption is measured by a function τ(·), which may

depend on the covariates Xt. f (Xt) is a potentially complicated function of the covariates and εt

is an independently distributed error term. Double robustness, as discussed above, arises from the

following reformulation (Athey, Tibshirani, and Wager, 2019):

Yt − m(x) = τ(x)(Wt − e(x)) + εt (D.3)

where the regression component is m(x) = E[Yt|Xt = x] = f (x) + τ(x)e(x) and the propensity

score component is e(x) = E[Wt|Xt = x]. We build the model in two steps:

1. We estimate the nuisance functions m(x) and e(x) using local linear forests. A nuisance

function is a function that is not of direct interest for the question at hand but needs to be

estimated in order to identify the variable of interest. Local linear forests fit a linear model to

the local observations in each leaf. They have proven superior for smooth, non-linear signals

(Friedberg et al., 2021). A key feature of our predictions m̂(x) and ê(x) is the honesty property.

An honest tree divides the data into two subsamples. The first subsample is used to define the

splitting rules and the second subsample is used for the estimation within a leaf. Only with

honest trees the estimators have the desired asymptotic properties, such as consistency and

asymptotic normality required for valid inference (Wager and Athey, 2018), e.g. used for the

confidence intervals presented in the lower panel of Figure 5.1.

2. We use a causal forest to find neighborhoods for the treatment effects. In each neighborhood,

we estimate D.3 where we replace m(x) and e(x) by m̂(x) and ê(x).3 The formulation has the

advantage that we can still recover a good estimate of τ(·) even if our estimates of the nuisance

functions are noisy (Tibshirani et al., 2023). We obtain an estimated function τ̂(x) according

to (Wager and Athey, 2018; Tibshirani et al., 2023):4

τ̂(x) =
∑︁

{t:Xt∈N(x)}(Wt − ê(Xt))(Yt − m̂(Xt))∑︁
{t:Xt∈N(x)}(Wt − ê(Xt))2

where N(x) refers to the neighborhood of a particular covariate realization x found by the

causal tree.

The causal forest consists of B = 104 trees in total. For exposition, we show the tree b = 1 in

Figure D.3
3For notational simplicity, we gloss over the fact that the prediction for t is made on the basis of all observations except

for t. See Tibshirani et al., 2023 for details.
4We assume here that the local linear regression model is solved by ordinary least squares (OLS).
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Figure D.3: b = 1 causal decision tree

D.3 Model fit

Before turning to the robustness checks, we further investigate the model output. The causal forest

model discussed in the previous section is trained to predict the savings effect induced by the gas

crisis. However, as shown in Figure 5.1, we can recover the expected gas consumption in either

scenario from the model. We can use these expected gas consumption paths to compare them against

the actual consumption in the pre-crisis period (2018-Feb 2022). While the aim of our model is

not to maximize the in-sample fit of consumption in the pre-crisis period and it would still produce

consistent estimates of the savings effect even if the relevant covariates only accounted for a small

share of the observed variation in gas consumption, a good pre-crisis model fit makes it more unlikely

that we omitted a confounding factor.5 It is, therefore, informative to compare the pre-crisis fit of our

model with alternative approaches. Note that in the pre-crisis period, actual consumption is modeled

with the (Wt = 0) scenario of our model. We can recover the scenario by computing:

µtˆ (x, 0) = m̂(x) − τ̂(x)ê(x)

In the left panel of Figure D.4, we plot the predictions µ̂t(x, 0) against the observed consumption

between January 2018 and 23 February 2022. We observe that the fitted values are very close two

the black line, which indicates a perfect fit. We compute a root mean squared error (RSME) of

5A confounding factor is a covariate that affects both the likelihood for a particular day to be one with behavioral
savings and the gas consumption. Such a factor, if omitted, induces a spurious behavioral savings effect.
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Figure D.4: Comparison of causal forest pre-crisis (2018-Feb 2022) fit to other methods

75.2 GWh. In comparison to other methods, such as a simple heating degree day (HDD) correction

(middle panel), in which we regress the observed consumption on max(15−T mean
t , 0), or the standard

load profiles (SLP) used by the network operators (left panel), we note that the causal forest fit is

tighter, especially so for the lowest temperatures.6

D.4 Robustness

In contrast to prediction models, where evaluation metrics can be readily calculated on a validation

dataset, the quality of the model for τ(x) cannot be readily evaluated in the same manner as the

true values are not available. Following earlier approaches (Tibshirani et al., 2023), we conduct an

auxiliary regression that helps to assess the causal forest fit and test the null hypothesis of no saving

effect heterogeneity. We further conduct placebo tests (c.f. Athey and Imbens, 2017) and run a few

sensitivities on the treatment start date.
6T mean

t refers to the mean temperature on day t. Like the residual load data, the SLP predictions of the network
operators have been retrieved from Trading Hub Europe as well (see Section D.1). We note that comparing these with our
model outputs is not an exact like-for-like comparison as they at least partially rely on (historical) short-term temperature
forecasts rather than historical realized temperature data. However, deviations tend to be small and forecasts are subject
to repeated validation processes (BDEW, 2021). The SLP predictions result from a set of sigmoid functions with different
parameters for different regions and building types and therefore are far more detailed than any sigmoid function-based
model we could have built based on publicly available data.
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Table D.2: Calibration test of causal forest with robust standard errors (HC3)

Dependent variable: (Yt − m̂t)

α

Mean forest prediction (τ̄) 1.005∗∗∗

(0.043)

Differential forest prediction (τt − τ̄) 1.094∗∗∗

(0.052)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

D.4.1 Omnibus test for causal forest fit

An omnibus test is a test for general model goodness-of-fit evaluation (Tibshirani et al., 2023). We fit

a simple linear model regressing the estimated left-hand-side of D.3 on the mean predicted savings

effect τ̄ =
∑︁

t τt and the differential effect τt − τ̄:

(Yt − m̂t) = α0τ̄ + α1(τt − τ̄) + νt

An α0 value close to one suggests that the mean effect is correct, while α1 close to one suggests

additionally that the heterogeneity of the effect is well captured. As shown in Table D.2, both

coefficients are fairly close to one and we conclude that the causal forest fit is adequate.

D.4.2 Placebo testing

Placebo testing is another standard technique in causal inference to test underlying model assump-

tions (Athey and Imbens, 2017). A very basic premise of our model is that the behavioral saving

effects do not occur before the start of the energy crisis, the exact start of which is uncertain and

subject to additional sensitivities in the next section.

Therefore, we run two sets of auxiliary models. We define nsavings as the length of the set of days

for which we suppose the presence of behavioral savings T = {t : Wt = 1}, hence nsavings =
∑︁

t Wt.

We define the set of control days as C = {t : Wt = 0}. For K times, we take a random sample Sk ⊂ C

without replacement. In step (1) of the placebo test, we assign all days t ∈ Sk a dummy treatment

W′
t = 1 and set W′

t = 0 ∀t ∈ C\Sk. We estimate our model over C with Wt replaced by W′
t . We store

the average placebo-saving effect. In step (2), we estimate the original model over the set T ∪C\Sk.

We save the resulting leave-n-out average savings effect. We repeat steps (1) and (2) K times to

obtain two distributions of average savings effects.

We use the leave-n-out estimation instead of our main specification of the model for the true

savings effect to make our model comparable to the placebo draws in terms of statistical power. We

set K = 100.
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Figure D.5: Placebo test results

Figure D.5 shows the distributions of the Placebo runs in step (1) and the leave-n-out runs in step

(2). While all runs in the latter render significant saving effects of around -96 GWh, the distribution

of placebo runs is centered around 0 and only 4% of the estimated effects are statistically significant

at the 10% level.

We are therefore confident to reject the hypothesis that the estimated savings effects above are

just noise.

D.4.3 Crisis start sensitivities

We have chosen the day of the Russian invasion of Ukraine, 24 February 2022, as the start of our

savings period, where Wt = 1. However, there are arguments for shifts in either direction. An earlier

savings start could be supported by the fact that wholesale gas prices started rising above long-term

average levels as early as September 2021 (Ruhnau, Stiewe, et al., 2022). On the other hand, the

need for gas savings for households and commercial sectors only really became evident and a topic

in the public domain in the Summer of 2022. Therefore, we test our assumption with respect to the

start date by re-running our model with a monthly sequence of start dates beginning on 24 September

2021 and ending on 24 August 2022. For each iteration, we compute the total cumulative predicted

savings in the period from 1 September 2022 until 31 December 2022.

Figure D.6 shows that the results are very robust to variations of the savings start date in 2022. For

start dates in 2021, however, cumulative estimated savings from September 2022 to December 2022

decline rapidly, suggesting that households and commercial sectors did not react to the foreboding

developments in wholesale markets at the time.
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Figure D.6: Start date sensitivity

D.4.4 COVID-19

The pre-crisis period of our data set includes the COVID-19 pandemic. As households practiced

social distancing, worked from home, and shops and offices remained closed, the heating behavior

of residential and commercial sectors is likely to have changed compared to the pre-COVID period.

Suppose that extended periods of isolation at home have led to more gas consumption, ceteris

paribus, even offsetting the reduced demand by commercial buildings. If this were true, our model

may deliver biased results as it exaggerates counterfactual gas demand compared to what would have

been expected, as the world has gone back to normal in 2022, but for the gas crisis due to the Russian

invasion of Ukraine.

Therefore, we conduct a sensitivity test in order to determine if our results hinge on a potential

exaggeration of savings due to lockdowns. In Germany, the first lockdown started on 22 March 2020

and ended on 4 May 2020. A second lockdown began with lighter restrictions on 2 November 2020.

By January, tighter restrictions were imposed and the lockdown was not lifted before 9 May 2021.

Let L ⊂ C be the set of lockdown days in our pre-crisis data set. In the first step, we estimate our

model over the set T ∪ C \ L. Further, we define a broader set of pandemic days that comprises all

days between 1 March 2020 and 31 December 2021. Let this set be denoted by P. In a second step,

we compute our model estimates over the set T ∪ C \ P.

As shown in Table D.3, the effect of excluding the lockdown period is negligible. The effect of

excluding the full pandemic period is a bit larger at ca. 7%. However, we do not think it is reasonable

to exclude this period entirely. While it is very likely that heating behaviors have changed during the

pandemic, it is also probable that at least a part of those changes continues to take effect today, e.g.
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Table D.3: COVID-19 sensitivity

Scenario Est. cum. behavioral savings Change
Baseline 23.0 TWh

Excl. lockdown days (L) 22.7 TWh -1.58%
Excl. all pandemic days (P) 21.5 TWh -7.09%

due to flexible working-from-home policies. We conclude that our model is not substantially biased

by the inclusion of the COVID-19 period in the control set C.

D.5 Code

We wrote a Python script for gas consumption data downloads and Deutscher Wetterdienst API calls.

All modeling steps and charting were conducted in R. We make all code available in this repository:

gitlab.com/diw-evu/projects/gas-savings.
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E.1 Health

E.1.1 Descriptives

0 100 200km

1990 2000 2010

First year of operation

Exact turbine locations in Germany

© EuroGeographics for the administrative boundaries

Figure E.1: Exact locations of on-shore wind turbines in Germany until 2017. Each dot indicates a
turbine coloured by the first year of operation. Thick black lines indicate the borders of federal states.
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Table E.1: Summary statistics.

Variable Mean Median SD Minimum Maximum Observations

Outcomes
General Health 48.96 45.61 9.75 24.85 66.37 31395
Mental Health: Summary Scale 51.17 52.85 9.79 3.11 79.33 31395
... General 51.13 50.26 9.75 19.73 68.58 31395
... Role-Emotional Functioning 50.34 58.08 9.96 13.34 58.08 31395
... Social Functioning 50.20 57.12 9.97 14.69 57.12 31395
... Vitality 49.64 48.71 9.92 26.82 70.60 31395
Physical Health: Summary Scale 48.19 49.88 10.13 9.21 77.65 31395
... Role-Physical Functioning 49.02 50.27 10.39 21.92 59.72 31395
... Physical Functioning 48.54 50.58 10.35 27.25 58.35 31395
... Bodily Pain 49.17 50.64 10.25 23.00 59.85 31395
Self-Assessed Health 3.32 3.00 0.94 1.00 5.00 31395
Doctor Visits 9.72 4.00 15.45 0.00 396.00 30229

Covariates
Age 53.50 54.00 16.70 16.00 99.00 31395
Gender [1: male, 2: female] 1.51 2.00 0.50 1.00 2.00 31395
Is Married 0.71 1.00 0.46 0.00 1.00 31395
Is in Civil Partnership 0.00 0.00 0.02 0.00 1.00 31395
Is Divorced 0.06 0.00 0.24 0.00 1.00 31395
Is Widowed 0.07 0.00 0.26 0.00 1.00 31395
Is Unemployed 0.04 0.00 0.20 0.00 1.00 31395
Is on Parental Leave 0.01 0.00 0.09 0.00 1.00 31395
Is in Training 0.02 0.00 0.14 0.00 1.00 31395
Is Part-Time Employed 0.12 0.00 0.33 0.00 1.00 31395
Is Full-Time Employed (baseline) 0.34 0.00 0.48 0.00 1.00 31395
Number of Individuals in Household 2.79 2.00 1.30 1.00 13.00 31395
Number of Children in Household 0.49 0.00 0.92 0.00 8.00 31395
Is Owner 0.70 1.00 0.46 0.00 1.00 31395
Is Renter (baseline) 0.30 0.00 0.46 0.00 1.00 31395
Annual Rent (in 1000) 4.34 2.40 5.73 0.00 119.99 31395
Annual Net Household Income (in 1000) 36.63 31.20 28.85 0.12 1199.99 31395

Summary statistics for outcomes are before standardising.
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Table E.2: Wind power plants: summary statistics.

Variable mean md sd min max

Power capacity [MW] 1.55 1.5 0.82 0 3.4

Hub height [m] 88.42 85.0 32.15 4 149.0

Rotor diameter [m] 76.23 77.0 23.26 6 126.0

Table E.3: Wind power plants: summary statistics per year.

Variable year mean md sd min max

2002 1.28 1.50 0.48 0.01 2.00

2010 1.72 2.00 0.74 0.01 3.05Power capacity [MW]
2015 2.39 2.40 0.99 0.05 3.30

2002 75.71 74.00 18.07 10.00 100.00

2010 98.11 98.00 34.29 10.00 138.00Hub height [m]
2015 122.06 140.00 35.36 32.00 149.00

2002 64.24 70.00 15.44 6.00 80.00

2010 75.74 82.00 15.17 48.00 101.00Rotor diameter [m]
2015 112.24 115.35 12.84 77.00 126.00
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Table E.4: Normalised differences between treatment (4 km) and control (4-8 km) group.

Mean Variance

Variable Treatment Control Treatment Control Normalised Difference

Age 54.91 53.01 252.84 287.36 0.08

Gender [1: male, 2: female] 1.49 1.52 0.25 0.25 0.03

Is Married 0.74 0.69 0.19 0.21 0.08

Is in Civil Partnership 0 0 0 0 0

Is Divorced 0.05 0.06 0.05 0.06 0.03

Is Widowed 0.07 0.07 0.06 0.07 0.01

Is Unemployed 0.04 0.04 0.04 0.04 0.01

Is on Parental Leave 0 0.01 0 0.01 0.04

Is in Training 0.02 0.02 0.02 0.02 0.02

Is Part-Time Employed 0.11 0.12 0.1 0.11 0.03

Is Full-Time Employed (baseline) 0.35 0.34 0.23 0.23 0.01

Number of Individuals in Household 2.72 2.82 1.43 1.76 0.05

Number of Children in Household 0.41 0.52 0.69 0.89 0.09

Is Owner 0.77 0.67 0.18 0.22 0.15

Is Renter (baseline) 0.23 0.33 0.18 0.22 0.15

Annual Rent (in 1000) 4.38 4.33 30.03 33.86 0.01

Annual Net Household Income (in 1000) 35.09 37.17 420.58 976.04 0.06

Observations 8178 23217
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The figure relates to our baseline specification (0-4 km treatment group, 4-8 km control group, outcome: self-assessed
health (Table 6.1 Column 4)). In Panel A, we show the frequency of firstly treated individuals (new wind turbine installed
nearby individual by year). In Panel B, we show the frequency of never-treated individuals. Panel C, the cumulative
density function of individuals from Panel A.

Figure E.2: Frequency (Panel A) and cumulative density (Panel B) of treated individuals by year and
frequency of never treated individuals (Panel C) for outcome self-assessed health.
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The figure relates to our baseline specification (0-4 km treatment group, 4-8 km control group, outcome: general health
(Table 6.1 Column 1)). In Panel A, we show the frequency of firstly treated individuals (new wind turbine installed nearby
individual by year). In Panel B, we show the frequency of never treated individuals. Panel C, the cumulative density
function of individuals from Panel A.

Figure E.3: Frequency (Panel A) and cumulative density (Panel B) of treated individuals by year and
frequency of never treated individuals (Panel C) for outcome general health.
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The figure depicts the number of treated individuals by the size of the wind park. As seen, most individuals are treated by
single wind turbines or by wind farms consisting of less than five wind turbines.

Figure E.4: Treatment intensity.
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E.1.2 Results

E.1.2.1 Static

Table E.5: Robustness Checks.

SF-12 Health Survey: General Health Summary Scale

SE Clust. at household Incl. movers Incl. all leads and lags Years < 2010 Years ≥ 2010 Small plants only (< 100m hub height) Large plants only (≥ 100m)
(1) (2) (3) (4) (5) (6) (7)

Variables
Treated 0-4 km 0.07∗ 0.07∗∗ 0.05 0.07 0.01 0.07∗ 0.05

(0.04) (0.03) (0.03) (0.04) (0.06) (0.04) (0.05)

Fixed-effects
Individual, County and State-Year Yes Yes Yes Yes Yes Yes Yes

Fit statistics
Adjusted R2 0.591 0.585 0.588 0.611 0.592 0.594 0.590
Obs. 26,903 41,051 27,731 10,724 14,432 25,405 24,707
N treated 700 923 700 385 197 417 280
N never treated 8,002 12,669 8,002 3,479 6,007 8,002 8,002

SF-12 Health Survey: Mental Health Summary Scale

SE Clust. at household Incl. movers Incl. all leads and lags Years < 2010 Years ≥ 2010 Small plants only (< 100m hub height) Large plants only (≥ 100m)
(1) (2) (3) (4) (5) (6) (7)

Variables
Treated 0-4 km -0.007 0.009 -0.03 0.03 0.02 -0.007 -0.006

(0.05) (0.03) (0.04) (0.05) (0.08) (0.05) (0.05)

Fixed-effects
Individual, County and State-Year Yes Yes Yes Yes Yes Yes Yes

Fit statistics
Adjusted R2 0.485 0.481 0.485 0.508 0.487 0.479 0.483
Obs. 26,903 41,051 27,731 10,724 14,432 25,405 24,707
N treated 700 923 700 385 197 417 280
N never treated 8,002 12,669 8,002 3,479 6,007 8,002 8,002

SF-12 Health Survey: Physical Health Summary Scale

SE Clust. at household Incl. movers Incl. all leads and lags Years < 2010 Years ≥ 2010 Small plants only (< 100m hub height) Large plants only (≥ 100m)
(1) (2) (3) (4) (5) (6) (7)

Variables
Treated 0-4 km 0.0009 0.006 -0.001 0.01 -0.10 0.01 -0.02

(0.04) (0.03) (0.03) (0.04) (0.06) (0.04) (0.05)

Fixed-effects
Individual, County and State-Year Yes Yes Yes Yes Yes Yes Yes

Fit statistics
Adjusted R2 0.668 0.663 0.664 0.683 0.675 0.670 0.672
Obs. 26,903 41,051 27,731 10,724 14,432 25,405 24,707
N treated 700 923 700 385 197 417 280
N never treated 8,002 12,669 8,002 3,479 6,007 8,002 8,002

Self-Assessed Health

SE Clust. at household Incl. movers Incl. all leads and lags Years < 2010 Years ≥ 2010 Small plants only (< 100m hub height) Large plants only (≥ 100m)
(1) (2) (3) (4) (5) (6) (7)

Variables
Treated 0-4 km 0.02 0.009 0.02 0.05∗ -0.02 0.03 -0.008

(0.02) (0.02) (0.02) (0.03) (0.04) (0.02) (0.03)

Fixed-effects
Individual, County and State-Year Yes Yes Yes Yes Yes Yes Yes

Fit statistics
Adjusted R2 0.601 0.591 0.597 0.620 0.600 0.604 0.601
Obs. 68,289 101,396 71,869 32,488 32,558 63,774 58,944
N treated 1,509 2,038 1,510 1,062 378 1,023 481
N never treated 10,533 16,148 10,533 4,650 7,697 10,533 10,533

Doctor Visits

SE Clust. at household Incl. movers Incl. all leads and lags Years < 2010 Years ≥ 2010 Small plants only (< 100m hub height) Large plants only (≥ 100m)
(1) (2) (3) (4) (5) (6) (7)

Variables
Treated 0-4 km 0.03 0.02 0.03 0.05∗ -0.03 0.04 -0.009

(0.03) (0.02) (0.03) (0.03) (0.06) (0.03) (0.03)

Fixed-effects
Individual, County and State-Year Yes Yes Yes Yes Yes Yes Yes

Fit statistics
Adjusted R2 0.357 0.339 0.346 0.366 0.363 0.357 0.348
Obs. 65,068 97,343 68,652 32,446 29,391 60,573 55,746
N treated 1,508 2,037 1,509 1,064 375 1,022 480
N never treated 8,767 13,941 8,767 4,647 5,933 8,767 8,767

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1; clustered (plant, unless differently) standard errors in parentheses; treatment group 0-4 km; control group 4-8 km.
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Table E.6: Average Treatment Effects: Mental Health.

SF-12 Health Survey: Mental Health

Dependent Variable: General Role-Emotional Functioning Social Functioning Vitality

(1) (2) (3) (4)

Variable

Treated 0-4 km 0.02 -0.03 -0.007 -0.008

(0.04) (0.04) (0.04) (0.04)

Controls Yes Yes Yes Yes

Fixed-effects

Individual Yes Yes Yes Yes

County Yes Yes Yes Yes

State-Year Yes Yes Yes Yes

Statistics

Adjusted R2 0.484 0.470 0.431 0.452

Obs. 26,903 26,903 26,903 26,903

N treated 700 700 700 700

N never treated 8,002 8,002 8,002 8,002

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1; clustered (plant) standard-errors in parentheses; treatment group 0-4 km; control
group 4-8 km.
Outcomes in z-scores; more indicates better health.
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Table E.7: Average Treatment Effects: Physical Health.

SF-12 Health Survey: Physical Health

Dependent Variable: Role-Emotional Functioning Physical Functioning Bodily Pain

(1) (2) (3)

Variable

Treated 0-4 km -0.01 -0.01 -0.03

(0.03) (0.03) (0.04)

Controls Yes Yes Yes

Fixed-effects

Individual Yes Yes Yes

County Yes Yes Yes

State-Year Yes Yes Yes

Statistics

Adjusted R2 0.545 0.658 0.522

Obs. 26,903 26,903 26,903

N treated 700 700 700

N never treated 8,002 8,002 8,002

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1; clustered (plant) standard-errors in parentheses; treatment group 0-4 km; control
group 4-8 km.
Outcomes in z-scores; more indicates better health (but for bodily pain more indicates worse).
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Outcomes are in z-scores. More indicates better health (but for doctor visits more indicates worse).

Figure E.5: Dynamic effects for different fixed effects. Difference in health outcomes between
individuals living nearby a newly built wind turbine (i.e. within 4,000 meters) and individuals further
away (i.e. between 4,000 and 8,000 meters).
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Outcomes are in z-scores. More indicates better health (but for doctor visits more indicates worse).

Figure E.6: Dynamic effects for different control variables. Difference in health outcomes between
individuals living nearby a newly built wind turbine (i.e. within 4,000 meters) and individuals further
away (i.e. between 4,000 and 8,000 meters).
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Figure E.7: Dynamic effects for different samples, excl. and incl. cities. Difference in health outcomes
between individuals living nearby a newly built wind turbine (i.e. within 4,000 meters) and individuals
further away (i.e. between 4,000 and 8,000 meters).
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Figure E.8: Treatment intensities. Difference in health outcomes between individuals living nearby one
or several newly built wind turbines (i.e. within 4,000 meters) and individuals further away (i.e. between
4,000 and 8,000 meters).
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Figure E.9: Dynamic effects for different age groups. Difference in health outcomes between individuals
living nearby a newly built wind turbine (i.e. within 4,000 meters) and individuals further away (i.e.
between 4,000 and 8,000 meters).
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Figure E.10: Different outcomes. Difference in health outcomes between individuals living nearby a
newly built wind turbine (i.e. within 4,000 meters) and individuals further away (i.e. between 4,000 and
8,000 meters).
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Figure E.11: Dynamic effects (different estimators). Difference in health outcomes between individuals
living nearby a newly built wind turbine (i.e. within 4,000 meters) and individuals further away (i.e.
between 4,000 and 8,000 meters).
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Figure E.12: Dynamic effects for different clustering of standard errors. Difference in health outcomes
between individuals living nearby a newly built wind turbine (i.e. within 4,000 meters) and individuals
further away (i.e. between 4,000 and 8,000 meters).
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Figure E.13: Dynamic effects for different sample periods. Difference in health outcomes between
individuals living nearby a newly built wind turbine (i.e. within 4,000 meters) and individuals further
away (i.e. between 4,000 and 8,000 meters).

170



E.1 Health

Wind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installedWind turbine installed−0.2

0.0

0.2

−5 0 5

Years since installation

E
st

im
at

e 
an

d 
95

%
 C

on
f. 

In
t.

General HealthA

−0.2

0.0

0.2

−5 0 5

Years since installation

E
st

im
at

e 
an

d 
95

%
 C

on
f. 

In
t.

Mental HealthB

−0.2

0.0

0.2

−5 0 5

Years since installation

E
st

im
at

e 
an

d 
95

%
 C

on
f. 

In
t.

Physical HealthC

−0.2

0.0

0.2

−5 0 5

Years since installation

E
st

im
at

e 
an

d 
95

%
 C

on
f. 

In
t.

Health StatusD

−0.2

0.0

0.2

−5 0 5

Years since installation

E
st

im
at

e 
an

d 
95

%
 C

on
f. 

In
t.

Doctor VisitsE

4.0 − 4.5 km
4.5 − 5.0 km
5.0 − 5.5 km
5.5 − 6.0 km

Control group

Outcomes are in z-scores. More indicates better health (but for doctor visits more indicates worse).

Figure E.14: Dynamic effects for different control groups. Difference in health outcomes between
individuals living nearby a newly built wind turbine (i.e. within 4,000 meters) and individuals further
away (i.e. between 4,000 and 4,500 meters, within 4,000 and 5,000 meters, within 4,500 and 5,000
meters, within 5,000 and 5,500 meters, or within 5,500 and 6,000 meters).
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Outcomes are in z-scores. More indicates better health (but for doctor visits more indicates worse).

Figure E.15: Dynamic effects for different control groups. Difference in health outcomes between
individuals living nearby a newly built wind turbine (i.e. within 4,000 meters) and individuals further
away (i.e. between 4,000 and 6,000 meters, within 4,000 and 8,000 meters, or within 6,000 and 10,000
meters).
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Outcomes are in z-scores. More indicates better health (but for doctor visits more indicates worse).

Figure E.16: Dynamic effects for different treatment radii. Difference in health outcomes between
individuals living nearby a newly built wind turbine (i.e. within 2,000 meters, within 3,000 meters or
within 4,000 meters) and individuals further away (i.e. between 4,000 and 8,000 meters). For treatment
of 6,000 meters, the control group is 6,000-10,000 meters.
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E.2 Suicides

E.2.1 Descriptives
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Panel A shows counties with and without wind turbines in Germany in 2000. The thick black lines indicate the borders of
federal states (NUTS-1 regions), whereas the red thick line indicates the border of the federal state of Schleswig-Holstein,
the most northern German state. Panel B is a close-up of Schleswig-Holstein and shows, as an example, the exact location of
each installation in that federal state, where each dot indicates one installation. Blue dots highlight turbine locations within
4 km of Pinneberg county. Panel C plots the average number of suicides per million population by year for counties with
and without turbines as of 2000.

Figure E.17: Counties with and without wind turbines in 2000, illustration of turbines nearby a county
and average suicides by population over time for counties with and without turbines.
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Table E.8: Summary statistics suicides

Variable Mean Median SD Minimum Maximum Observations

Outcomes
Suicides per million population 128.91 126.38 34.48 22.70 273.98 1190

Covariates
Unemployed per capita 0.03 0.02 0.01 0.01 0.11 1190
GDP per capita [in thousand EUR] 28.29 26.00 11.29 11.01 107.42 1190
Average age 42.26 42.31 1.75 37.36 48.71 1190

Table E.9: Normalised differences between treated and not treated counties

Mean Variance

Variable Treatment Control Treatment Control Normalised Difference

Unemployed per capita 0.03 0.03 0 0 0.03
GDP per capita [in thousand EUR] 30.34 25.8 177.02 56.62 0.3
Average age 42.07 42.5 3.2 2.84 0.17
Observations 539 651
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Figure E.18: Frequency (Panel A) and cumulative density (Panel B) of treated counties by year and
frequency of never treated counties (Panel C).
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E.2 Suicides

E.2.2 Results

E.2.2.1 Static

Table E.10: Robustness of wind turbines on suicides.

Description Other Controlling With Years Considering With counties
dependent for urban 2000- 2010- turbines with turbine
variable intensity counties 2009 2017 within 4km in 2000

Dependent Variables: ln(Suicides) Suicides per million population
(1) (2) (3) (4) (5) (6) (7) (8)

Variable
ATT 1.8 × 10−17 -0.11 -0.78 -1.6 0.90 -3.4 -0.22 -0.39

(2.6 × 10−17) (1.4) (2.2) (1.1) (1.3) (2.9) (1.4) (0.93)
# Turbines 0.08

(0.08)
ln(1 + #Turbines) 0.79

(1.0)
Controls Yes Yes Yes Yes Yes Yes Yes Yes

Fixed-effects
County Yes Yes Yes Yes Yes Yes Yes Yes
State-Year Yes Yes Yes Yes Yes Yes Yes Yes

Statistics
Adjusted R2 1 0.959 0.959 0.924 0.963 0.970 0.965 0.949
Observations 1,190 1,190 1,190 2,474 723 390 828 4,700
N treated 73 73 73 102 46 30 55 272
N never treated 20 20 20 74 39 20 11 20

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1; clustered (county) standard-errors in parentheses;
Controls are GDP per capita, unemployment rate, average age and the log of number of suicides lagged by 10 years.
In columns (1-3, 5-8), we focus on non-urban areas only. In columns (1-7), we neglect counties with a turbine installed in 2000.
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E.2.2.2 Dynamic

First turbine installedFirst turbine installedFirst turbine installedFirst turbine installedFirst turbine installedFirst turbine installedFirst turbine installedFirst turbine installedFirst turbine installedFirst turbine installedFirst turbine installedFirst turbine installedFirst turbine installedFirst turbine installedFirst turbine installedFirst turbine installedFirst turbine installedFirst turbine installedFirst turbine installedFirst turbine installedFirst turbine installedFirst turbine installedFirst turbine installedFirst turbine installedFirst turbine installedFirst turbine installedFirst turbine installedFirst turbine installedFirst turbine installedFirst turbine installed
−10

−5

0

5

10

15

−5 0 5

Years since treatment

E
st

im
at

e 
an

d 
95

%
 C

on
f. 

In
t.

At least one turbineA

Ten or more installedTen or more installedTen or more installedTen or more installedTen or more installedTen or more installedTen or more installedTen or more installedTen or more installedTen or more installedTen or more installedTen or more installedTen or more installedTen or more installedTen or more installedTen or more installedTen or more installedTen or more installedTen or more installedTen or more installedTen or more installedTen or more installedTen or more installedTen or more installedTen or more installedTen or more installedTen or more installedTen or more installedTen or more installedTen or more installed
−10

−5

0

5

10

15

−5 0 5

Years since treatment

E
st

im
at

e 
an

d 
95

%
 C

on
f. 

In
t.

At least 10 turbinesB

>0.1 turbines per sqkm>0.1 turbines per sqkm>0.1 turbines per sqkm>0.1 turbines per sqkm>0.1 turbines per sqkm>0.1 turbines per sqkm>0.1 turbines per sqkm>0.1 turbines per sqkm>0.1 turbines per sqkm>0.1 turbines per sqkm>0.1 turbines per sqkm>0.1 turbines per sqkm>0.1 turbines per sqkm>0.1 turbines per sqkm>0.1 turbines per sqkm>0.1 turbines per sqkm>0.1 turbines per sqkm>0.1 turbines per sqkm>0.1 turbines per sqkm>0.1 turbines per sqkm>0.1 turbines per sqkm>0.1 turbines per sqkm>0.1 turbines per sqkm>0.1 turbines per sqkm>0.1 turbines per sqkm>0.1 turbines per sqkm>0.1 turbines per sqkm>0.1 turbines per sqkm>0.1 turbines per sqkm>0.1 turbines per sqkm
−10

−5

0

5

10

15

−5 0 5

Years since treatment

E
st

im
at

e 
an

d 
95

%
 C

on
f. 

In
t.

Turbine density by areaC

Sun and Abraham
TWFE

Estimation approach

Standard errors are clustered at the county level. We control for GDP per capita, the unemployment rate and average age. In Panel A,
we focus on non-urban areas only and also control for the log of number of suicides lagged by 10 years. We neglect counties that had a
turbine already installed in 2000. In Panel B, we neglect observations with between 1 and 9 turbines installed and counties that had 10
or more turbines already installed in 2000. In Panel C, we neglect regions with more than 0.1 turbines per sqkm in 2000. We also drop
observations with between 0.075 and 0.1 turbines per sqkm. Table 6.2 contains further details on the underlying estimations.

Figure E.19: Dynamic effects for wind turbines on suicides per 1,000,000 population for two estimation
approaches. Difference between counties with a (new) wind turbine (Panel A), counties with at least 10
turbines (Panel B) or counties with at least 0.1 turbines per sqkm (Panel C) and counties without turbines.
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